Leap Motion Announces Open Source Augmented Reality Headset

Leap Motion just dropped what may be the biggest tease in Augmented and Virtual Reality since Google Cardboard. The North Star is an augmented reality head-mounted display that boasts some impressive specs:

  • Dual 1600×1440 LCDs
  • 120Hz refresh rate
  • 100 degree FOV
  • Cost under $100 (in volume)
  • Open Source Hardware
  • Built-in Leap Motion camera for precise hand tracking

Yes, you read that last line correctly. The North Star will be open source hardware. Leap Motion is planning to drop all the hardware information next week.

Now that we’ve got you excited, let’s mention what the North Star is not — it’s not a consumer device. Leap Motion’s idea here was to create a platform for developing Augmented Reality experiences — the user interface and interaction aspects. To that end, they built the best head-mounted display they could on a budget. The company started with standard 5.5″ cell phone displays, which made for an incredibly high resolution but low framerate (50 Hz) device. It was also large and completely unpractical.

The current iteration of the North Star uses much smaller displays, which results in a higher frame rate and a better overall experience.  The secret sauce seems to be Leap’s use of ellipsoidal mirrors to achieve a large FOV while maintaining focus.

We’re excited, but also a bit wary of the $100 price point — Leap Motion is quick to note that the price is “in volume”. They also mention using diamond tipped tooling in a vibration isolated lathe to grind the mirrors down. If Leap hasn’t invested in some injection molding, those parts are going to make the whole thing expensive. Keep your eyes on the blog here for more information as soon as we have it!

Google Light Fields Trying To Get The Jump On Magic Leap

Light Field technology is a fascinating area of Virtual Reality research that emulates the way that light behaves to make a virtual scene look more realistic. By emulating light coming from multiple angles entering the eye, the scenes look more realistic because they look closer to reality. It is rumored to be part of the technology included in the forthcoming Magic Leap headset, but it looks like Google is trying to steal some of their thunder. The VR research arm of the search giant has released a VR app called Welcome to Light Fields that uses a similar technique on existing VR headsets, such as those from Oculus and Microsoft.

Continue reading “Google Light Fields Trying To Get The Jump On Magic Leap”

Reverse Engineering Opens Up The Samsung Gear VR Controller

We love a bit of reverse engineering here at Hackaday, figuring out how a device works from the way it communicates with the world. This project from [Jim Yang] is a great example of this: he reverse-engineered the Samsung Gear VR controller that accompanies the Gear VR add-on for their phones. By digging into the APK that links the device to the phone, he was able to figure out the details of the Bluetooth connection that the app uses to connect to the device. Specifically, he was able to find the commands that were used to get the device to send data, and was able to read this data to determine the state of the device. He was then able to use this to create his own web app to use this data.

Continue reading “Reverse Engineering Opens Up The Samsung Gear VR Controller”

HandHolo: A Homebrew ARG

Taking a dive into VR or augmented reality — once, dreamed-of science fiction — is not only possible for the average consumer, but crafting those experiences is as well! Hackaday.io user [kvtoet]’s HandHolo is a homebrew method to cut your teeth on peeking into a virtual world.

This project requires a smartphone running Android Oreo as its backbone, a Bluetooth mouse, a piece of cardboard and a small mirror or highly reflective surface. The phone is slotted into the cardboard housing — prototype with what you have! — above the mouse, and the mirror angled opposite the screen reflects the image back to the user as they explore the virtual scene.

Within Unity, [kvtoet]’s used a few scripts that access phone functions — namely the gyroscope, which is synchronised to the mouse’s movements. That movement is translated into exploration of the virtual space built in Unity and projected onto the portal-like mirror. Check it out!

Continue reading “HandHolo: A Homebrew ARG”

We Couldn’t Afford An Oculus, So We Built One

Like a lot of 16-year-olds, [Maxime Coutté] wanted an Oculus Rift. Unlike a lot of 16-year-olds, [Maxime] and friends [Gabriel] and [Jonas] built one themselves for about a hundred bucks and posted it on GitHub. We’ll admit that at 16 we weren’t throwing around words like quaternions and antiderivatives, so we were duly impressed.

Before you assume this is just a box to put a phone in like a Google Cardboard, take a look at the bill of materials: an Arduino Due, a 2K LCD screen, a Fresnel lens, and an accelerometer/gyro. The team notes that the screen is what will push the price unpredictably, but they got by for about a hundred euro. At the current exchange rate, if you add up all the parts, they went a little over $100, but they were still under $150 assuming you have a 3D printer to print the mechanical parts.

Continue reading “We Couldn’t Afford An Oculus, So We Built One”

Magic Leap Finally Announced; Remains Mysterious

Yesterday Magic Leap announced that it will ship developer edition hardware in 2018. The company is best known for raising a lot of money. That’s only partially a joke, since the teased hardware has remained very mysterious and never been revealed, yet they have managed to raise nearly $2 billion through four rounds of funding (three of them raising more than $500 million each).

The announcement launched Magic Leap One — subtitled the Creator Edition — with a mailing list sign up for “designers, developers and creatives”. The gist is that the first round of hardware will be offered for sale to people who will write applications and create uses for the Magic Leap One.

We’ve gathered some info about the hardware, but we’ll certainly begin the guessing game on the specifics below. The one mystery that has been solved is how this technology is delivered: as a pair of goggles attaching to a dedicated processing unit. How does it stack up to current offerings?

Continue reading “Magic Leap Finally Announced; Remains Mysterious”