Arduwatch Design Study Is Compelling Concept For DIY Smartwatch

Smartwatches are a battleground these days, with smartphone manufacturers vying to have the prettiest, sleekest, and longest-lasting device on the market. Meanwhile, DIY efforts continue to improve in sophistication as better components become available. [Rocky Bergen’s] Arduwatch is a particularly appealing design study, with such visual flair that we’d love to see it become a reality.

The design was inspired by the Arduboy, itself a lightweight homebrewed handheld console of impressive simplicity. [Rocky]’s concept hinges on taking that credit-card sized platform and repurposing it as a wearable device instead. The squared-off, retro design of the Arduwatch is appealing, as is its simple four-button interface and the bright colors [Rocky] chose to show it off. Ultimately, too, its low-resolution display would realistically be more than suitable for a great variety of simple smartwatch tasks, which often just involve displaying notifications and the like.

[Rocky’s] work may just be a design study, but it’s well thought out and eminently viable. We’d love to see how well this design could work in the real world, particularly if built with some nice resin-printed parts paired with a quality watch strap.

If you’ve heard of [Rocky Bergen] before, it may be due to his exquisite collection of retrocomputer papercraft designs. If you’ve been cooking up your own DIY smartwatch ideas, don’t hesitate to hit up the tipsline!

Adobe Scientist Cuts A Dash With LCD Shifting Dress

Adobe research scientist [Christine Dierk] showed off an interesting new project at the Adobe Max conference: Project Primrose, a dress covered with a series of liquid crystal panels that could react to movement, changing the design of the dress. Now, Adobe has released a paper showing some of the technical details of the process.

The paper is from the User Interface & Software (UIST) conference in 2022, so the examples it uses are older: it discusses a canvas and handbag. The dress uses the same technology, though, draped over a scientist rather than a frame. If you can’t access the version from UIST, [Dierk] has a free version here.

The dress uses Polymer-dispersed Liquid Crystal (PDLC) panels from the wonderfully named Shanghai HO HO Industry Co and is designed for use in windows and doors for privacy. It uses an Indium Tin oxide-coated PET film that is opaque by default but becomes transparent when a voltage difference is applied across the material.

These panels are shaped to a hexagonal shape, then wired together with flexible PCBs in a daisy chain. Interestingly, [Dierk] found that the smaller the panels were made, the lower the voltage was required to trigger them. For their canvas example, they dropped the voltage to a much safer -15V to 15V levels to trigger the two states, which is much safer for a wearable device.

The panels are also not completely transparent when triggered: the paper describes them as having a “soft ivory” look when they are overlaying a reflective material. Greyscales can also be made using Pulse Coded Modulation (PCM) to vary the panel’s transparency. Driving the panels at 3.2KHz, they created 64 shades of grey.

The main controller is a custom PCB with a Teensy 4.1 and a BlueFruit LE SPI module. The power comes from two 14.8V LiPo batteries, with converters to power the chips and switch modules so the Teensy can switch the -15 and +15V levels for the panels directly from each battery.

The array is made from modules, each with four panels connected to a controller PCB, which has several Analog Signal Device (ASD) ADG1414 chips. These receive the signals from the bus with switch registers to switch the panels individually.

Rather cleverly, [Dierk] uses the bus that daisy chains the modules together to deliver both power and the bus signal that controls the panels, using the -15 and +15V levels modulated with a 50Hz square wave to create the bus signal and power the panels at the same time. That’s a neat hack that reduces the complexity of the modules significantly.

The Teensy 4.1 controls the whole system and can use its IMU to sense movement and change the pattern accordingly. You don’t get to see the system’s electronics in the dress video, but they claim that the canvas example took just 0.58 Watts to drive, so the dress probably only needs a few watts.

It is a fascinating build (and a rather cute dress), and has a lot of potential. What would you do with this?

Continue reading “Adobe Scientist Cuts A Dash With LCD Shifting Dress”

2023 Halloween Hackfest: Flickering Pumpkin Pin Is Solidly Built

Now first of all, [Steph] grants that you can already take your pick of several LED pumpkin badges out there on IO. That’s not the point. The point is that this flickering pumpkin pin is nicely-built as well as being open source.

Even though it’s fully featured — it flickers, it’s wearable, and it’s lightweight — the build couldn’t be more simple. It’s fancy through-hole LEDs and a coin cell holder, plus a tack pin to stick it through your shirt. But the final result is quite elegant thanks to clever use of PCB layering.

The first version was to get all the layers right to let the light through and embellish the jack-o-lantern’s lines with manufacturer-applied silver solder, but as [Steph] points out, it looked ‘like something a disturbed child might carve into their desk in detention’. So [Steph] enlisted [Mx. Jack Nelson], who improved the artwork.

Pretty much every component does double duty here, including the tack pin — it serves as a switch because it can hold the battery in place. The battery’s edges reflect the glowing light quite nicely around the edge of the pin. And the LEDs beneath the battery prevent it from slipping out. You can see how it goes together in the video after the break.

Continue reading “2023 Halloween Hackfest: Flickering Pumpkin Pin Is Solidly Built”

These DIY Super Headphones Take Sound Seriously

[Pete Lewis] from SparkFun takes audio and comfort seriously, and recently shared details on making a customized set of Super Headphones, granting quality sound and stereo ambient passthrough, while providing hearing protection at the same time by isolating the wearer from the environment.

Such products can be purchased off the shelf (usually called some variant of “electronic hearing protection”), but every hacker knows nothing beats some DIY to get exactly the features one wants. After all, off-the-shelf solutions are focused on hearing protection, not sound quality. [Pete] also wanted features like the ability to freely adjust how much ambient sound was mixed in, as well as the ability to integrate a line-level audio source or Bluetooth input.

Early prototype of Super Headphones (click to enlarge)

On the surface the required components are straightforward, but as usual, the devil is in the details. Microphone selection, for example, required a lot of testing. A good microphone needed to be able to deal with extremely loud ambient sounds without distortion, yet still be sensitive enough to be useful. [Pete] found a good solution, but also muses that two sets of microphones (one for loud environments, and one for quieter) might be worth a try.

After several prototypes, the result is headphones that allow safe and loud band practice in a basement as easily as they provide high-quality music and situational awareness while mowing the lawn. Even so, [Pete]’s not done yet. He’s working on improving comfort by using photogrammetry to help design and 3D print custom-fitted components.

A Fossil Wrist PDA running the Overbite Gopher browser

Mobile Gopher Client Brings Fossil Wrist PDA Online

Like many new technologies, smartwatches needed a few iterations before they became useful enough for the average person. Early examples were too clunky and limited to be of use to anyone but geeks who wanted to show off their “next big thing”. The 2005 Fossil Wrist PDA was a prime example: although impressively compact for its time, its limited battery life and poor feature set made it obsolete as soon as it was released. But since it ran on Palm OS, it offered plenty of opportunity for hacking: Palm expert [Cameron Kaiser] has upgraded his Wrist with internet access.

While Palm OS 4 natively supports TCP/IP networking, this component was deleted from the Wrist version to save memory. In any case, the only viable network interface would have been the USB port, which isn’t too convenient for a watch. Not to be deterred, [Cameron] worked out a way to add network support back into the Wrist: he used the IR port on a Palm m505 to send a copy of its own network drivers to the watch. This works because both devices run the same basic OS version on the same CPU type; the only drawback is that the network setup dialog doesn’t respond correctly to the Wrist’s different set of buttons. Continue reading “Mobile Gopher Client Brings Fossil Wrist PDA Online”

Hands-Free Compass Uses Haptic Feedback

If you’ve never experienced it before, getting turned around on a cloudy day in the woods or getting lost during an event like a snowstorm can be extremely disorienting and stressful — not to mention dangerous. In situations where travel goes outside the beaten path, it’s a good idea to have some survival gear around, including a good compass. But if you need your hands for other things, or simply don’t want to have to stop often to check a compass, you might want to try out something like this belt-mounted haptic feedback compass.

The compass is based around a Raspberry Pi Pico microcontroller and uses a ULN2803a transistor array chip to control a series of motors. The motors are mounted all along a belt using custom 3D printed clips with wires woven to each through the holes in the belt. The firmware running on the belt communicates with an Android app via USB to control each of the motor’s vibration based on the direction the wearer is traveling and their desired heading. With certain patterns, the wearer can get their correct heading based on the vibrations they feel through the belt.

While it does rely on having a functioning phone, a modern smartphone’s built-in compass doesn’t require a signal to work. We would still recommend having a good simple compass in your pack as backup if you’re going to be far off the beaten path, though. There are other ways of navigation besides by compass, map, or GPS too. Have a shot at inertial navigation if you want a challenge.

Thanks to [Peter] for the tip!

The ‘Scope Of This Kickstarter? Ten Years.

It may have taken ten years to come through on this particular Kickstarter, but a promise is a promise. In late August 2023, backers who had since likely forgotten all about the project started receiving their oscilloscope watches from creator [Gabriel Anzziani]. Whatever the reason(s) for the delay, the watch looks great, and is miles ahead of the prototype pictures.

As you may have guessed, it functions as both a watch and an oscilloscope. The watch has 12- and 24-hour modes as well as an alarm and calendar, and the ‘scope has all the features of the Xprotolab dev board, which [Gabriel] also created: ‘scope, waveform generator, logic analyzer, protocol sniffer, and frequency counter.

Internally, it has an 8-bit Xmega microcontroller which features an internal PDI, and the display is a 1.28″ E ink display. When we covered this ten years ago, the screen was the type of Sharp LCD featured in the Pebble watch. [Gabriel]’s ‘scope watch features eight buttons around the edge which are user-programmable. One of [Gabriel]’s goals was for people to make their own apps.

Of course, the Kickstarter rewards are no longer available, but if you want to build your own small, digital ‘scope, check out this DIY STM32 project.

Image via the Company Formerly Known As Twitter