Joule Thief Steals Power For A Clock

A common project among electronics tinkerers is the joule thief, a self-oscillating circuit that can “steal” the remaining energy in a battery after the voltage has dropped so low that most devices would stop working. Typically the circuit powers an LED until almost all of the energy is extracted from the battery, but [Lionel Sears] has created a specialized joule theif that uses the “extra” energy to power a clock.

The circuit uses four coils instead of the usual two to extract energy from the battery. The circuit charges a large capacitor which provides the higher current pulses needed to drive the clock’s mechanism. It can power the clock from a single AA battery, and will run until the voltage on the battery is only 0.5 volts.

Normally the clock would stop running well before the voltage drops this low, despite the fact that there’s still a little chemical energy left in the batteries. The circuit can drive the clock for an extended time with a new battery, or could use old “dead” batteries to run the clock for a brief time while the final little bit of energy is drawn from them. If you’re so inclined, you could even use hot and cold water with a joule thief to run your clock! Thanks to [Steven] for the tip.

Hack A Solar Garden Light Into A Flashlight

solargardenflashlight

While browsing through his local dollar store, [Taylor] came across a suspicious looking rock that, upon closer inspection, turned out to be a solar garden light. He scooped it up, took it home and cracked it open, modding it to function as a handheld solar flashlight.

Inside was a pathetically small 40mAh rechargeable battery, which he upgraded to a more standard rechargeable AA. The garden rock came pre-built with its own boost converter to kick up the voltage for the LED, but it was fairly dim. We’re guessing [Taylor] didn’t bother reverse engineering the converter and instead simply did some trial and error, but he managed to increase the LED’s brightness by slapping on a different value inductor.

As fun as it may be to have a rock for a flashlight, [Taylor] decided to cobble together a custom case out of a spare USB charger, making a battery holder and adding a pushbutton. The result is a handy solar flashlight that takes around five hours to charge. Check out some other custom lights: a lithium-powered PVC flashlight or one with a snazzier aluminum body and interchangeable heads.

Measuring The Capacities Of Different Battery Brands

Being the smart consumer he is, [Denis] usually looks at the price per pound when comparing similar products at the grocery store. When it came time to buy a few AA batteries, he didn’t have any data to go on. To solve his little conundrum, [Denis] decided he would test several brands of batteries and see which one gives him the most bang for the buck.

After bringing home a haul of a dozen different brands of AA cells, [Denis] broke out the Arduino and starting designing a circuit. To test how much energy each brand provides, the Arduino measures the voltage across a load every second until the battery reaches 0.2V. The elapsed time, as well as the voltage, Watt hours, Joules, and ambient temperature are logged on an attached LCD screen and sent over a USB serial link to automate the data collection process.

What’s the verdict? Unsurprisingly, words like ‘super,’ ‘max,’ and ‘ultra’ didn’t connotate a better battery. The best bang for the buck came from an off-brand called RS Power Ultra. The worst battery was the Panasonic Evolta cells that came in at about $1.50 USD per watt-hour.

If you’d like to verify [Denis]’ work, all the code is up on Github along with the schematic.