Casting CNC Parts In Aluminium

When it comes to machining, particularly in metal, rigidity is everything. [Tailortech] had a homebuilt CNC machine with a spindle held in place by a plastic bracket. This just wasn’t up to the job, so the decision was made to cast a replacement.

[Tailortech] decided to use the lost PLA process – a popular choice amongst the maker crowd. The spindle holder was first sketched out, then modeled in Fusion 3D 360. This was then printed in PLA slightly oversized to account for shrinkage in the casting process.

The PLA part was then used to make a plaster mold. [Tailortech] explains the process, and how to avoid common pitfalls that can lead to problems. It’s important to properly heat the mold once the plaster has set to remove moisture, but care must be taken to avoid cracking or wall calcination. It’s then necessary to slowly heat the mold to even higher temperatures to melt out the PLA prior to casting. With the mold completed, it can be filled with molten aluminium to produce the final part. When it’s cooled off, it’s then machined to final tolerances and installed on the machine.

Lost PLA casting is a versatile process, and goes to show that not everything has to be CNC machined out of billet to do the job. It’s also readily accessible to any maker with a furnace and a 3D printer. If you’ve got a casting project of your own, be sure to let us know. Video after the break.

Continue reading “Casting CNC Parts In Aluminium”

And So Castings Made Of (Kinetic) Sand . . . Turn Out Pretty Well, Actually

That kinetic sand stuff is pretty cool. It’s soft, it builds motor skills, and outside of sprinkling it on carpet, it’s not messy. If you don’t know, it’s 98% sand and 2% polydimethylsiloxane, which is a major component of Silly Putty, and according to a certain yellow and red clown, it’s safe enough to put in chicken nuggets. [Chris]’s wife bought him some, probably because she wanted to see him play around with something that isn’t potentially deadly for a change. In the course of researching its magical properties, he found out that it doesn’t really have a thermal breakdown point, per se. At high enough temperatures, It vitrifies like a sand castle in a mushroom cloud. Between this property and its malleability, [Chris] thought he’d have a reasonable substitute for founding sand. As you can see in his latest experiment, he was right. As a bonus, he managed to turn the benign into the dangerous.

[Chris] had never cast aluminium before, so he decided to start small by making an offset cam for a rotary broach. He packed some magic sand in a wax paper cup and shoved the cam in to make the negative. Then he cut down some aluminium rod and put it in a graphite crucible. He stuck his DC arc welder’s electrode down into the crucible and cranked it up to 50A. That wasn’t enough, so he went to 110. The crucible was soon glowing orange. He carefully poured the molten aluminium into the mold. Make the jump to see how it panned out.

Spoiler alert: there’s no cussin’ this time!

Continue reading “And So Castings Made Of (Kinetic) Sand . . . Turn Out Pretty Well, Actually”