Shoot The Moon With This Homebrew Hardline RF Divider

You can say one thing for [Derek]’s amateur radio ambitions — he certainly jumps in with both feet. While most hams never even attempt to “shoot the Moon”, he’s building out an Earth-Moon-Earth, or EME, setup which requires this little beauty: a homebrew quarter-wave hardline RF divider, and he’s sharing the build with us.

For background, EME is a propagation technique using our natural satellite as a passive communications satellite. Powerful, directional signals can bounce off the Moon and back down to Earth, potentially putting your signal in range of anyone who has a view of the Moon at that moment. The loss over the approximately 770,000-km path length is substantial, enough so that receiving stations generally use arrays of high-gain Yagi antennas.

That’s where [Derek]’s hardline build comes in. The divider acts as an impedance transformer and matches two 50-ohm antennas in parallel with the 50-ohm load expected by the transceiver. He built his from extruded aluminum tubing as the outer shield, with a center conductor of brass tubing and air dielectric. He walks through all the calculations; stock size tubing was good enough to get into the ballpark for the correct impedance over a quarter-wavelength section of hardline at the desired 432-MHz, which is in the middle of the 70-cm amateur band. Sadly, though, a scan of the finished product with a NanoVNA revealed that the divider is resonant much further up the band, for reasons unknown.

[Derek] is still diagnosing, and we’ll be keen to see what he comes up with, but for now, at least we’ve learned a bit about homebrew hardlines and EME. Want a bit more information on Moon bounce? We’ve got you covered.

Continue reading “Shoot The Moon With This Homebrew Hardline RF Divider”

Hackaday Links Column Banner

Hackaday Links: March 22, 2020

Within the span of just two months, our world of unimaginable plenty and ready access to goods manufactured across the globe has been transformed into one where the bare essentials of life are hard to find at any price. The people on the frontline of the battle against COVID-19 are suffering supply chain pinches too, often at great risk to their health. Lack of proper personal protective equipment (PPE), especially face masks, is an acute problem, and the shortage will only exacerbate the problem as healthcare workers go down for the count. Factories are gearing up to make more masks, but in the meantime, the maker and hacker community can pitch in. FreeSewing, an open-source repository of sewing patterns, has a pattern for a simple face mask called the Fu that can be made quickly by an experienced threadworker. Efficacy of the masks made with that pattern will vary based on the materials used, obviously; a slightly less ad hoc effort is the 100 Million Mask Challenge, where volunteers are given a pattern and enough lab-tested materials to make 100 face masks. If you know how to sew, getting involved might make a difference.

As people around the world wrap their heads around the new normal of social distancing and the loss of human contact, there’s been an understandable spike in interest in amateur radio. QRZ.com reports that the FCC has recorded an uptick in the number of amateur radio licenses issued since the COVID-19 outbreak, and license test prep site HamRadioPrep.com has been swamped by new users seeking to prepare for taking the test. As we’ve discussed, the barrier for entry to ham radio is normally very low, both in terms of getting your license and getting the minimal equipment needed to get on the air. One hurdle aspiring hams might face is the cancellation of so-called VE testing, where Volunteer Examiners administer the written tests needed for each license class. Finding a face-to-face VE testing session now might be hard, but the VEs are likely to find a way to adapt. After all, hams were social distancing before social distancing was cool.

The list of public events that have been postponed or outright canceled by this pandemic is long indeed, with pretty much everything expected to draw more than a handful of people put into limbo. The hacking world is not immune, of course, with many high-profile events scuttled. But we hackers are a resourceful bunch, and the 10th annual Open Source Hardware Summit managed to go off on schedule as a virtual meeting last week. You can watch the nearly eight-hour livestream while you’re self-isolating. We’re confident that other conferences will go virtual in the near-term too rather than cancel outright.

And finally, if you’re sick of pandemic news and just want some escapist engineering eye candy, you could do worse than checking out what it takes to make a DSLR camera waterproof. We’ve honestly always numbered cameras as among the very least waterproof devices, but it turns out that photojournalists and filmmakers are pretty rough on their gear and expect it to keep working even so. The story here focuses (sorry) on Olympus cameras and lenses, which you’ll note that Takasu-san only ever refers to as “splash-proof”, and the complex system of O-rings and seals needed to keep water away from their innards. For our money, the best part was learning that lenses that have to change their internal volume, like zoom lenses, need to be vented so that air can move in and out. The engineering needed to keep water out of a vented system like that is pretty impressive.

High Power LoRa And Tropospheric Reflection Experiments

We’re used to LoRa as a free-to-use digital radio protocol allowing not-very-high data rate communications over distances of a few miles. It’s made all kinds of distributed sensor systems a breeze, and some experimenters have made an art of achieving communication over hundreds of miles. But what would happen if you took a brute-force approach to LoRa and simply wound up the power?

In a bid to test its efficiency at bouncing off the troposphere in normal conditions, [Inductive Twig] hooked up a HamShield 70cm LoRa shield to an 80W power amplifier and a high-gain Yagi antenna pointing directly upwards mounted with ingenuity on a spade, and drove around looking at the received result. With an effective radiated power of 1500W this wasn’t your normal LoRa, instead being operated with LoRa as an amateur radio mode.

For those not familiar with radio propagation, radio waves bounce off some surprising things. In this case the aim was to bounce them off the troposphere, but while radio amateurs and LoRa distance chasers wait until weather conditions deliver a so-called “lift” in which the troposphere is especially reflective, here the experiment was performed under normal flat conditions. The result characterizes LoRa’s possibilities for everyday extreme-range mode rather than chasing records, and in that there were some interesting results. The reflected signal was receivable in bursts with low but consistent signal strength, with the limiting factor during the test as that they ran out of land upon which to drive in the southernmost peninsula of New Jersey. We’ve heard of War-Driving for open WiFi… does this car dashboard setup count as LoRa-Driving?

LoRa is designed as a protocol tolerant of low signal levels and some packet loss, so this experiment is an interesting demonstration of its possibilities when used at higher powers under a licensed transmission. It shouldn’t be possible to use the 70cm band for reliable tropospheric propagation under non-lift conditions, but this shows that it can be done. Meanwhile, take a look at a previous attempt to push LoRa using a balloon.

Amateur Radio Homebrewing Hack Chat

Join us on Wednesday, March 18 at noon Pacific for the Amateur Radio Homebrewing Hack Chat with Charlie Morris!

For many hams, the most enticing part of amateur radio is homebrewing. There’s a certain cachet to holding a license that not only allows you to use the public airwaves, but to construct the means of doing so yourself. Homebrew radios range from simple designs with a few transistors and a couple of hand-wound coils to full-blown rigs that rival commercial transceivers in the capabilities and build quality — and sometimes even surpass them. Hams cook up every piece of gear from the antenna back, and in many ways, the homebrewers drive amateur radio technology and press the state of the art forward.

Taking the dive into homebrewing can be daunting, though. The mysteries of the RF world can be a barrier to entry, and having some guidance from someone who has “been there, done that” can be key to breaking through. New Zealand ham Charlie Morris (ZL2CTM) has been acting as one such guide for the adventurous homebrewer with his YouTube channel, where he presents his radio projects in clear, concise steps. He takes viewers through each step of his builds, detailing each module’s design and carefully walking through the selection of each component. He’s quick to say that his videos aren’t tutorials, but they do teach a lot about the homebrewer’s art, and you’ll come away from each with a new tip or trick that’s worth trying out in your homebrew designs.

Charlie will join us for the Hack Chat this Wednesday to discuss all things homebrewing. Stop by with your burning questions on DIY amateur radio, ask about some of Charlie’s previous projects, and get a glimpse of where he’s going next.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, March 18 at 12:00 PM Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Continue reading “Amateur Radio Homebrewing Hack Chat”

Hackaday Links Column Banner

Hackaday Links: February 23, 2020

If you think your data rates suck, take pity on New Horizons. The space probe, which gave us lovely pictures of the hapless one-time planet Pluto after its 2015 flyby, continued to plunge and explore other, smaller objects in the Kuiper belt. In January of 2019, New Horizons zipped by Kuiper belt object Arrokoth and buffered its findings on the spacecraft’s solid-state data recorders. The probe has been dribbling data back to Earth ever since at the rate of 1 to 2 kilobits per second, and now we have enough of that data to piece together a story of how planets may have formed in the early solar system. The planetary science is fascinating, but for our money, getting a probe to narrowly miss a 35-kilometer long object at a range of 6.5 billion km all while traveling at 51,500 km/h is pretty impressive. And if as expected it takes until September to retrieve all the data from the event at a speed worse than dialup rates, it’ll be worth the wait.

Speaking of space, if you’re at all interested in big data, you might want to consider putting your skills to work in the search for extraterrestrial intelligence. The Berkeley SETI Research Center has been feeding data from the Green Bank Telescope and their Automated Planet Finder into the public archive of Breakthrough Listen, a 10-year, $100 million initiative to scan the million closest stars in our galaxy as well as the 100 nearest galaxies for signs of intelligent life. They’re asking for help to analyze the torrents of data they’re accumulating, specifically by developing software and algorithms to process the data. They’ve set up a site to walk you through the basics and get you started. If you’re handy with Python and have an interest in astronomy, you should check it out.

Staying with the space theme, what’s the best way to get kids interested in space and electronics? Why, by launching a satellite designed to meme its way across the heavens, of course. The Mission for Education and Multimedia Engagement satellite, or MEMESat-1, is being planned for a February 2021 launch. The 1U cubesat will serve as an amateur radio repeater and slow-scan TV (SSTV) beacon that will beam down memes donated to the project and stored on radiation-hardened flash storage. In all seriousness, this seems like a great way to engage the generation that elevated the meme to a modern art form in a STEM project they might otherwise show little interest in.

It looks as though Linux might be getting a big boost as the government of South Korea announced that they’re switching 3.3 million PCs from Windows to Linux. It’s tempting to blame Microsoft’s recent dropping of Windows 7 support for the defenestration, but this sounds like a plan that’s been in the works for a while. No official word on which distro will be selected for the 780 billion won ($655 million) effort, which is said to be driven by ballooning software license costs and a desire to get out from under Microsoft’s thumb.

And finally, in perhaps the ickiest auction ever held, the “Davos Collection” headed to the auction block this week in New York. The items offered were all collected from the 2018 World Economic Forum in Davos, Switzerland, where the world’s elites gather to determine the fate of the 99.999%. Every item in the collection, ranging from utensils and glassware used at the many lavish meals to “sanitary items” disposed of by the billionaires, and even hair and fluid samples swabbed from restrooms, potentially holds a genetic treasure trove in the form of the DNA it takes to be in the elite. Or at least that’s the theory. There’s a whole “Boys from Brazil” vibe here that we find disquieting, and we flatly refuse to see how an auction where a used paper cup is offered for $8,000 went, but if you’d like to virtually browse through the ostensibly valuable trash of oligarchs, check out the auction catalog.

Stout Homebrew Radio Pumps Out 200W Of AM Goodness

In this day and age, with cheap online shopping, software defined radio and bargain-basement Baofengs from China, the upstart radio ham is spoilt for choice. Of course, there’s nothing quite like the charm of keying up your own homebrewed rig, cooked up in the garage from scratch. [Paul], aka [VK3HN], knows just how it feels, and put together an epic 200 watt Class D AM rig to blast his signal on the airwaves.

An example of an Arduino used in one of [Paul]’s builds.
It’s a build following on from the work of another radio ham, [Laurie], aka [VK3SJ]. Younger hackers will note the Arduino Nano at the heart of the project, running the VFO and handling all the relevant transmit/receive switching. We can only imagine how welcome modern microcontrollers must have been to old hands at amateur radio, making synthesizing all manner of wild frequencies a cinch.

The amount of effort that has gone into the build is huge. There are handwound coils for the PWM low-pass filter, and the PCB is home-etched in ferric chloride, doing things the old-school way. There’s also a healthy pile of dead components that sacrificed their lives in the development of this build. Perhaps our favorite part is the general aesthetic – we can’t get over the combination of hand-drawn copper traces and off-the-shelf Arduinos.

Many components perished in the development of this powerful rig.

It’s a build that far exceeds the Australian legal limits, so it only gets keyed up to 120W in real use. This has the benefit of keeping the radio operating far in the safety zone for its components, helping keep things cool and stable. We’re sure [Paul] will be getting some great contacts on this rig. If you’re suffering from low power yourself, consider an amplifer build. Video after the break.

Continue reading “Stout Homebrew Radio Pumps Out 200W Of AM Goodness”

Name That Unknown RF Signal With A Little FFT Magic

Time was once that the amateur radio bands were an aurally predictable place. Spinning the dial up and down the bands, one heard familiar sounds – the staccato of Morse, the [Donald Duck] of sideband voice transmissions, and the occasional flute-like warble of radioteletype signals. Now, the ham bands are full of exotic signals encoding all manner of digital signals, each one with a unique sound and unique demodulation needs. What’s a ham to do?

Help is on the way. [José Carlos Rueda] has made progress toward automatically classifying unknown signals by modifying a Shazam-like app. Shazam is a popular smartphone app that listens to a few seconds of a song, creates an audio fingerprint of it, and searches a massive database of songs for a match. [Rueda] used a homebrew version of the app to search a SQL-lite database of audio fingerprints populated not with a playlist of popular music, but with samples from every known signal type in the Signal Identification Wiki. The database contains hashes for an FFT of each sample, which can be easily searched. With a five to ten second sample of a signal, captured either live over a microphone or from a recording,  he is able to identify the signal automatically.

Whether it be the weird, dissonant wail of PSK-31 or the angry buzzing of PACTOR, the goings-on across the bands no longer have to remain a mystery. We really like the idea here, and wonder if it can be expanded upon to visually decode signals based on their waterfall signatures using TensorFlow. There are some waterfall examples in [Danie Conradie]’s excellent article on RF modulation that could get you started.

[via RTL-SDR.com]