Cool Face Mask Turns Into Over-Engineered Headache

Seeing his wife try to use a cool face mask to get through the pain of a migraine headache, [Sparks and Code] started thinking of ways to improve the situation. The desire to save her from these debilitating bouts of pain drove him to make an actively cooled mask, all the while creating his own headache of an over-engineered mess.

Void spaces inside the printed mask are filled with chilled water.

Instead of having to put the face mask into the refrigerator to get it cold, [Sparks and Code] wanted to build a mask that he could circulate chilled water through. With a large enough ice-filled reservoir, he figured the mask should be able to stay at a soothing temperature for hours, reducing the need for trips to the fridge.

[Sparks and Code] started out by using photogrammetry to get a 3D model of his wife’s face. Lack of a compatible computer and CUDA-enabled GPU meant using Google Cloud to do the heavy lifting. When they started making the face mask, things got complicated. And then came the unnecessary electronics. Then the overly complicated  and completely unnecessary instrumentation. The… genetic algorithms? Yes. Those too.

We won’t spoil the ending — but suffice it to say, [Sparks and Code] learned a cold, hard lesson: simpler is better! Then again, sometimes being over-complicated is kind of the point such as in this way-too-complex gumball machine.

Continue reading “Cool Face Mask Turns Into Over-Engineered Headache”

Mask DIY sanitization device on the left, mask used as an example on the right. The device is a Tupperware-like plastic container, on top, a small motor plus battery device with an alligator clip attached to the motor. Mask is inserted into the container through the opening on top, hooked to the motor, and the motor then spins the mask inside the container where hydrogen peroxide vapor is being misted.

Mask Sanitization That Anyone Can Build

We’ve seen a wide variety of mask sanitization solutions, and now, [spiritplumber] from [Robots Everywhere] brings us a frugal and ingenious design – one that you barely even need tools for. This project might look rough around the edges but looks were never a prerequisite, and as a hacker worth their salt will recognize – this is an answer to “how to design a mask disinfector that anyone can build”.

Local shortages of masks have been threatening communities here and there, doubly so if you need a specific kind of mask that might be out of stock. This design could apply to a whole lot of other things where sterilization is desired, too – improving upon concepts, after all, is our favourite pastime.

The design is simple – a battery-powered motor rotating a mask inside a vat of concentrated H2O2, turned into mist by a cheap ultrasonic misting gadget. As the “turntable” rotates a your PPE of choice, making sure that every crevice is graced with cleaning touch of peroxide, it also causes the H2O2 mist to circulate. Fulfilling most important requirements for a proper sanitization system that more complex devices have been struggling with, this approach has certainly earned its place under the sun.

[Robots Everywhere] have shared a small library of their DIY PPE resources with all of us, and that’s not all they work on – recently, we’ve seen their aeroponics project rejuvenating garlic.

Using hydrogen peroxide vapour for PPE sanitization is a well-tested approach by now, as we’ve seen it deployed back in 2020 on a larger scale as part of an FDA-approved design. And if you only have 3% peroxide at hand, might as well try concentrating it further!

Continue reading “Mask Sanitization That Anyone Can Build”

Smart Camera Based On Google Coral

As machine learning and artificial intelligence becomes more widespread, so do the number of platforms available for anyone looking to experiment with the technology. Much like the single board computer revolution of the last ten years, we’re currently seeing a similar revolution with the number of platforms available for machine learning. One of those is Google Coral, a set of hardware specifically designed to take advantage of this new technology. It’s missing support to work with certain hardware though, so [Ricardo] set out to get one working with a Raspberry Pi Zero with this smart camera build based around Google Coral.

The project uses a Google Coral Edge TPU with a USB accelerator as the basis for the machine learning. A complete image for the Pi Zero is available which sets most of the system up right away including headless operation and includes a host of machine learning software such as OpenCV and pytesseract. By pairing a camera to the Edge TPU and the Raspberry Pi, [Ricardo] demonstrates many of its machine learning capabilities with several example projects such as an automatic license plate detector and even a mode which can recognize whether or not a face mask is being worn, and even how correctly it is being worn.

For those who want to get into machine learning and artificial intelligence, this is a great introductory project since the cost to entry is so low using these pieces of hardware. All of the project code and examples are available on [Ricardo]’s GitHub page too. We could even imagine his license plate recognition software being used to augment this license plate reader which uses a much more powerful camera.

Making A Halloween Costume Fit For 2020

All across the country, parents are wondering what to do about the upcoming Trick Or Treat season. Measures such as social distancing, contact free treats, or simply doing it at home are all being weighed as a balance of fun and safety. [BuildXYZ] has decided to lean into the challenges this year and incorporate a mask as part of the costume for his boys.

It started with a 3d printed mask, printed in two halves, and sealed with silicon caulk and N95 filter material in the inlet and outlet holes on the sides. The real magic of the mask is the small OLED screen mounted to the front that works along with a small electret microphone inside the mask. By sampling the microphone and applying a rolling average, the Arduino Nano determines if the mouth drawn on the display should be open or closed. A small battery pack on a belt clip (with a button to flash “Trick or Treat” on the screen) powers the whole setup and can be easily hidden under a cape or costume.

This isn’t the first hack we’ve seen for Halloween this year, such as this socially distant candy slide. We have a feeling that there will be many more as the month rolls on and people start to apply their ingenuity to the season.

Continue reading “Making A Halloween Costume Fit For 2020”

The Mask Launcher; Like An Airbag For Your Face

One of the most effective ways to slow the spread of pathogens like the novel coronavirus is to have individuals wear facemasks that cover the nose and mouth. They’re cheap, and highly effective at trapping potentially infectious aerosols that spread disease. Unfortunately, wearing masks has become a contentious issue, with many choosing to go without. [Allen Pan] was frustrated by this, and set out to make a launcher to quite literally shoot masks directly onto faces.

To fire the masks, Allan built a pneumatic system that gets its power from a compact CO2 canister. This is hooked up to a solenoid, which is fired by the trigger. The high-pressure CO2 then goes through a split to four separate barrels cleverly made out of brake line ([Allen] says it’s faster to get parts from the automotive supply than the home store these days). Each barrel fires a bola weight attached to one of the strings of the mask, in much the same way a net launcher works. The mask is then flung towards the face of the target, and the weights wrap around the back of the neck, tangling and ideally sticking together thanks to neodymium magnets.

Amazingly, the mask worked first time, wrapping effectively around a dummy head and covering the nose and mouth. Follow-up shots were less successful, however, but that didn’t deter [Allen] from trying the device on himself at point-blank range. Despite the risk to teeth and flesh, the launcher again fires a successful shot.

While it’s obviously never meant to be used in the real world, the mask launcher was a fun way to experiment with pneumatics and a funny way to start the conversation about effective public health measures. We’ve featured similar projects before, too. Video after the break.

Continue reading “The Mask Launcher; Like An Airbag For Your Face”

Microwave Modified For Disinfecting

We’re all hopefully a little more concerned about health these days, but with that concern comes a growing demand for products like hand sanitizer, disinfectant, and masks. Some masks are supposed to be single-use only, but with the shortage [Bob] thought it would be good if there were a way to sanitize things like masks without ruining them. He was able to modify a microwave oven to do just that.

His microwave doesn’t have a magnetron anymore, which is the part that actually produces the microwaves for cooking. In its place is an ultraviolet light which has been shown to be effective at neutralizing viruses. The mask is simply placed in the microwave and sterilized with the light. He did have to make some other modifications as well since the magnetron isn’t always powered up when cooking, so instead he wired the light into the circuit for the turntable so that it’s always powered on.

Since UV can be harmful, placing it in the microwave’s enclosure like this certainly limits risks. However, we’d like to point out that the mesh on the microwave door is specifically designed to block microwaves rather than light of any kind, and that you probably shouldn’t put your face up to the door while this thing is operating. Some other similar builds have addressed this issue. Still, it’s a great way to get some extra use out of your PPE.

A Properly Engineered UV Chamber For PPE Sanitization

Designed to be used once and then disposed of, personal protective equipment (PPE) such as N95 face masks proved to be in such short supply during the early days of the COVID-19 pandemic that getting a few extra uses out of them by sanitizing them after a shift seemed smart. And so we saw a bunch of designs for sanitizing chambers, mostly based on UV-C light and mostly, sad to say, somewhat dodgy looking. This UV-C disinfection chamber, though, looks like a much better bet.

The link above is to the final installment of a nine-part series by [Jim] from Grass Roots Engineering. The final article has links to all the earlier posts, which go back [Jim]’s early research on UV-C sanitization methods back in March. This led him to settle on an aquarium sanitizer as his UV-C source. A second-hand ultraviolet meter allowed him to quantify the lamp’s output and plan how best to use it, which he did using virtual models of various styles of masks.  Knowing that getting light on every surface of the mask is important, he designed a mechanism to move the mask around inside a reflective chamber. The finished chamber, which can be seen in the video below, is 3D-printed and looks like it means business, with an interlock for safety and a Trinket for control.

We love the level of detail [Jim] put into these posts and the thoughtful engineering approach he took toward this project. And we appreciate his careful testing, too — after all, it wouldn’t do to use a germicidal lamp that actually doesn’t emit UV-C.

Continue reading “A Properly Engineered UV Chamber For PPE Sanitization”