Reaction Trainer Keeps You On Your Toes

In many sports, it’s important for competitors to be light on their feet, and able to react quickly to external stimuli. It all helps with getting balls in goals, and many athletes undergo reaction drills as part of their training regime. To help with this, [mblaz] set out to build a set of reaction trainers.

The training setup consists of a series of discs, each with glowing LEDs and a proximity sensor. The discs randomly light up, requiring a touch or wave to switch them off. At this point, another disc will light randomly, and so on.

The discs are built using an ATmega328 to run the show, with NRF24L01+ radios used to communicate between the modules. High brightness red LEDs are used for indication. An optical proximity sensor is used for its fast reaction time and low cost, while power comes via a small lithium polymer battery integrated into each disc.

We’re sure [mblaz] and his fellow athletes will find the rig to be useful in their training. There’s plenty of scope for electronics to help out with athletic training; this boxing trainer is a great example. If you’ve got a great sports engineering project of your own, don’t hesitate to send it in!

Line Following Robot Trains Runners

 

Can your line following robot move faster than [Usain Bolt] who has been described as “The World’s Fastest Timed Human”? Puma, the athletic footwear, apparel and accessories company, created such a robot to help train their company sponsored athletes.

The shoebox-sized robot exceeds [Bolt]’s top speed of 44-km/hour. At that speed, following a line gets tricky. It took the development team 8 prototypes to attain that capability. Inside the BeatBot an Arduino reads 9 infrared sensors for line detection at 100 samples a second. A digital servo controls the Ackerman steering mechanism to follow the line on the track or floor. Wheel encoders provide the data for speed and distance measurement.

The user can set the distance of the run and the time to beat. Run pacing can also be adjusted. LEDs on the robot provide the starting ‘gun’ and help the runner see the BeatBot using peripheral vision. Two GoPro cameras, front and rear, provide a visual record of the run.

Puma believes that actually running against a competitor, even a robot, improves performance more than just running against the clock. They’re betting a grown-up line follower will help Olympic class athletes improve their performance. Continue reading “Line Following Robot Trains Runners”

Space Tech Helps Athlete Attain World Record

German athlete [Wojtek Czyz] set a new world record for the long jump at the Paralympics 2008 in Beijing, with the aid of his space tech enhanced prosthetic leg. He jumped a record 6.5 meters, 27 centimeters more than the previous record. Prior to switching to his new prosthetic leg for athletic competitions, he was prone to breaking the prosthesis when he performed to the best of his abilities. [Czyz] and his trainer met with ESA’s Technology Transfer Programme (TTP) technology broker MST Aerospace to assess the most important parts of the prosthesis. According to [Dr. Werner Dupont], MST Aerospace Managing Director, the crucial element was the connection angle, or L-bracket. Working with German company ISATEC, they developed a new L-bracket using a much lighter and stronger material from the Alpha Magnetic Spectrometer (AMS), which is an instrument that will be installed on the ISS to study extraterrestrial matter. We find it interesting and pretty cool that space technology can help enhance a disabled athlete’s performance, and think that this could lead to interesting possibilities, even for those who aren’t athletes.

[via Boing Boing]