Chatting About The State Of Hacker-Friendly AR Gear

There are many in the hacker community who would love to experiment with augmented reality (AR), but the hardware landscape isn’t exactly overflowing with options that align with our goals and priorities. Commercial offerings, from Google’s Glass to the Microsoft HoloLens and Magic Leap 2 are largely targeting medical and aerospace customers, and have price tags to match. On the hobbyist side of the budgetary spectrum we’re left with various headsets that let you slot in a standard smartphone, but like their virtual reality (VR) counterparts, they can hardly compare with purpose-built gear.

But there’s hope — Brilliant Labs are working on AR devices that tick all of our boxes: affordable, easy to interface with, and best of all, developed to be as open as possible from the start. Admittedly their first product, Monocle, it somewhat simplistic compared to what the Big Players are offering. But for our money, we’d much rather have something that’s built to be hacked and experimented with. What good is all the latest features and capabilities when you can’t even get your hands on the official SDK?

This week we invited Brilliant Lab’s Head of Engineering Raj Nakaraja to the Hack Chat to talk about AR, Monocle, and the future of open source in this space that’s dominated by proprietary hardware and software.

Continue reading “Chatting About The State Of Hacker-Friendly AR Gear”

NVIDIA Jetson Powers Real-Time Iron Man HUD

If you could recreate any of the capabilities of Tony Stark’s Iron Man suit in real life, it would probably be the ability to fly, the super strength, or maybe even the palm-mounted lasers that can cut through whatever obstacle is in your path. But let’s be real, all that stuff is way too hard to try and pull off. Plus you’ll probably just end up accidentally killing yourself in the backyard.

But judging by the videos he’s been posting, [Kris Kersey] is doing one hell of a job creating a functional heads-up display (HUD) similar to the one Tony uses in the films. He’s even building it into a 3D printed Iron Man helmet, with the NVIDIA Jetson board that’s powering the show inside a chest-mounted “Arc Reactor”. He goes into a bit more detail about the project and his goals in an interview recently published on NVIDIA’s own blog. Continue reading “NVIDIA Jetson Powers Real-Time Iron Man HUD”

Supercon 2022: Aedan Cullen Is Creating An AR System To Beat The Big Boys

There’s something very tantalizing about an augmented reality (AR) overlay that can provide information in daily life without having to glance at a smartphone display, even if it’s just for that sci-fi vibe. Creating a system that is both practical and useful is however far from easy, which is where Aedan Cullen‘s attempt at creating what he terms a ‘practical augmented reality device’.

In terms of requirements, this device would need to have a visual resolution comparable to that of a smartphone (50 pixels/degree) and with a comparable field of view (20 degrees diagonal). User input would need to be as versatile as a touchscreen, but ‘faster’, along with a battery life of at least 8 hours, and all of this in a package weighing less than 50 grams.

Continue reading “Supercon 2022: Aedan Cullen Is Creating An AR System To Beat The Big Boys”

Inspect The RF Realm With Augmented Reality

Intellectually, we all know that we exist in a complex soup of RF energy. Cellular, WiFi, TV, public service radio, radar, ISM-band transmissions from everything from thermometers to garage door openers — it’s all around us. It would be great to see these transmissions, but alas, most of us don’t come from the factory with the correct equipment.

Luckily, aftermarket accessories like RadioFieldAR by [Manahiyo] make it possible to visualize RF signals. As the name suggests, this is an augmented reality system that lets you inspect the RF world around you. The core of the system is a tinySA, a pocket-sized spectrum analyzer that acts as a broadband receiver. A special antenna is connected to the tinySA; unfortunately, there are no specifics on the antenna other than it needs to have a label with an image of the Earth attached to it, for antenna tracking purposes. The tinySA is connected to an Android phone — one that supports Google’s ARCore — by a USB OTG cable, and a special app on the phone runs the show.

By slowly moving the antenna around in the field of view of the phone’s camera, a heat map of signal strength at a particular frequency is slowly built up. The video below shows it in action, and the results are pretty cool. If you don’t have a tinySA, fear not — [Manahiyo] has a version of the app that supports a plain old RTL-SDR dongle too. That should make it easy for just about anyone to try this out.

And if you’re feeling deja vu about this, you’re probably remembering the [Manahiyo]’s VR spectrum analyzer, upon which this project is based.

Continue reading “Inspect The RF Realm With Augmented Reality”

Image from the paper with items a-d. a) Schematic of the EC navigation system integrated with a smart contact lens consisting of GPS receiver module, Arduino UNO as a processor, and PB display. b) Photograph of contact lens placed on the 3D printed replica eyeball. c) Camera setup of the navigation system on the dashboard of a car. d) Driving schemes updating the direction signal: (1–4) images show the four cases of operational principles used in the navigation system. Based on 0.2 V applied to the common pin, 0 V (off-state) and 0.7 V (on-state) are applied alternately in 5 WEs, and operating voltages with relative voltages of −0.2 V and 0.5 V are obtained (From the figure reads left to right: the name of 6 pins used in the system, their on–off status, the applied voltage, and relative voltage). Scale bar is 2 mm.

Smart Contact Lenses Tell You Where To Go

Augmented Reality (AR) promises to relieve us from from the boredom of mundane reality and can also help you navigate unfamiliar environments. Current AR tech leaves something to be desired, but researchers at the Korea Electrotechnology Research Institute have brought AR contact lenses closer to actual reality.

The researchers micro-printed FeFe(CN)6 ink onto the contact substrate and thermally reduced it at 120˚C for nine seconds to form Prussian Blue, an electrochromic pigment. By confining the material with the meniscus of the ink, resolution was better than previous techniques to display data on contact lenses. While the ability to reversibly change from clear to blue faded after 200 cycles, the researchers were targeting a disposable type of smart contact lens, so degradation of the display wasn’t considered a deal breaker.

Since voltages applied were constant, it seems this isn’t a true bi-stable display like e-ink where power is only required to change states. The on condition of a section required 0.5 V while off was -0.2 V. The researchers printed a contact with straight, left, and right arrows as well as STOP and GO commands. Connected to a GPS-equipped Arduino Uno, they used it to navigate between ten different checkpoints as a demonstration. Only a 3D printed eyeball was brave enough (or had IRB approval) to wear the contact lens, so watching the state change through a macro lens attached to a smartphone camera had to do.

With more AR devices on the way, maybe it’s time to start embedding household objects with invisible QR codes or cleaning your workshop to get ready for your AR workbench.

A PCB with several points highlighted by a projection system

Augmented Reality Workbench Helps You To Debug Your Boards

No matter how advanced your design skills, the chances are you’ll need to spend some time chasing bugs in your boards after they come back from the assembly house. Testing and debugging a PCB typically involves a lot of cross-checking between the board, the layout and the schematic, which quickly becomes tiresome even for mildly complex designs. To make this task a bit easier, [Ishan Chatterjee] and colleagues at the University of Washington have designed the Augmented Reality Debugging Workbench, or ARDW for short.

The ARDW is a setup consisting of a lab workbench with an antistatic mat, a selection of measurement instruments and a PC. You can simply place your board on the bench, open the schematic and layout in KiCAD and start measuring and debugging your design as you normally would, but the real magic happens when you select a new icon in KiCAD that exports the schematic and layout to the ARDW system. From that moment, you can select components in your schematic and have them highlighted not only on the layout, but on the physical board in front of you as well. This is perhaps best demonstrated visually, as the team members do in the video embedded below.

The real-life highlighting of components is achieved thanks to a set of cameras that track the motion of everything on the desk as well as a video projector that overlays information on top of the PCB. All of this enables a variety of useful debugging features: for example, there’s an option to highlight pin one on all components, enabling a simple visual check of each component’s orientation. You can select all Do Not Populate (DNP) instances and immediately see if all highlighted pads are empty. If you’re not sure which component you’re looking at, just point at it with your multimeter probe and it’s highlighted on the schematic and layout. You can even place your probes on a net and automatically log the voltage for future reference, thanks to a digital link between the multimeter and the ARDW software.

In addition to designing and building the ARDW, the team also performed a usability study using a group of human test subjects. They especially liked the ability to quickly locate components on crowded boards, but found the on-line measurement system a bit cumbersome due to its limited positional accuracy. Future work will therefore focus on improving the resolution of the projected image and generally making the system more compact and robust. All software is freely available on the project’s GitHub page, and while the current system looks a little complex for hobbyist use, we can already imagine it being a useful tool in production environments.

It’s not even the first time augmented reality has been used for PCB debugging: we saw a somewhat similar system at the 2019 Hackaday Superconference. AR can also come in handy during the design and prototyping phase, as demonstrated by this AR breadboard.

Continue reading “Augmented Reality Workbench Helps You To Debug Your Boards”

Hackaday Prize 2022: Hedge Watcher Aims To Save Precious Bird Life

Hedges aren’t just a pretty garden decoration. They’re also a major habitat for many species of insects, birds, and other wildlife. In some areas, a lot of hedge trimming goes during the time that local birds are raising their fledglings, which causes harm at a crucial time. Thus, [Johann Elias Stoetzer] and fellow students were inspired to create Hedge Watcher.

Birds can easily blend in with their surroundings, but thermal cameras are a great way to spot them.

The concept is simple – using thermal vision to spot birds inside a hedge when they may not otherwise be easily visible. Many species blend in with their surroundings in a visual manner, so thermal imaging is a great way to get around this. It can help to avoid destroying nests or otherwise harming birds when trimming back hedges. The idea was sourced from large-scale agricultural operations, which regularly use thermal cameras mounted on drones to look for wildlife before harvesting a field.

However, staring at a thermal camera readout every few seconds while trimming hedges isn’t exactly practical. Instead, the students created an augmented reality (AR) monocular to allow the user to trim hedges at the same time as keeping an eye on the thermal camera feed. Further work involved testing a binocular AR headset, as well as a VR headset. The AR setups proved most useful as they allowed for better situational awareness while working.

It’s a creative solution to protecting the local birdlife, and is to be applauded. There’s plenty of hubris around potential uses for augmented reality, but this is a great example of a real and practical one. And, if you’re keen to experiment with AR yourself, note that it doesn’t have to break the bank either!