Retrotechtacular: The Tyranny Of Large Numbers

Although much diminished now, the public switched telephone network was one of the largest machines ever constructed. To make good on its promise of instant communication across town or around the world, the network had to reach into every home and business, snake along poles to thousands of central offices, and hum through the ether on microwave links. In its heyday it was almost unfathomably complex, with calls potentially passing through thousands of electronic components, any of which failing could present anything from a minor annoyance to a matter of life or death.

The brief but very interesting film below deals with “The Tyranny of Large Numbers.” Produced sometime in the 1960s by Western Electric, the manufacturing arm of the Bell System, it takes a detailed look at the problems caused by scaling up systems. As an example, it focuses on the humble carbon film resistor, a component used by the millions in various pieces of telco gear. Getting the manufacturing of these simple but critical components right apparently took a lot of effort. Initially made by hand, a tedious and error-prone process briefly covered in the film, Western Electric looked for ways to scale up production significantly while simultaneously increasing quality.

While the equipment used by the Western engineers to automate the production of resistors, especially the Librascope LGP-30 computer that’s running the show, may look quaint, there’s a lot about the process that’s still used to this day. Vibratory bowl feeders for the ceramic cores, carbon deposition by hot methane, and an early version of a SCARA arm to sputter gold terminals on the core could all be used to produce precision resistors today. Even cutting the helical groove to trim the resistance is similar, although today it’s done with a laser instead of a grinding wheel. There are differences, of course; we doubt current resistor manufacturers look for leaks in the outer coating by submerging them in water and watching for bubbles, but that’s how they did it in the 60s.

The productivity results were impressive. Just replacing the silver paint used for terminal cups with sputtered gold terminals cut 16 hours of curing time out of the process. The overall throughput increased to 1,200 pieces per hour, an impressive number for such high-reliability precision components, some of which we’d wager were still in service well into the early 2000s. Most of them are likely long gone, but the shadows cast by these automated manufacturing processes stretch into our time, and probably far beyond.

Continue reading “Retrotechtacular: The Tyranny Of Large Numbers”

Retrotechtacular: The 1951 Telephone Selector

Telephone systems predate the use of cheap computers and electronic switches. Yesterday’s phone system used lots of stepping relays in a box known as a “selector.” If you worked for the phone company around 1951, you might have seen the Bell System training film shown below that covers 197 selectors.

The relays are not all the normal ones we think of today. There are slow release relays and vertical shafts that are held by a “dog.” The shaft moves to match the customer’s rotary dial input.

Continue reading “Retrotechtacular: The 1951 Telephone Selector”

How The Bell System Was Built

We’ve often thought that while going to the moon in the 1960s was audacious, it was just the flashiest of many audacious feats attempted and accomplished in the 20th century. Imagine, for a minute, that the phone system didn’t exist today, and you stood up in front of a corporate board and said, “Let’s run copper wire to every home and business in the world.” They’d probably send you for a psychiatric evaluation. Yet we did just that, and, in the United States, that copper wire was because of the Bell system, which [Brian Potter] describes in a recent post.

The Bell company, regardless of many name changes and divisions, was clearly a very important company. [Brian] points out that in 1917, it was the second-largest company in the United States and continued to grow, eventually employing a whopping 1% of the entire U.S. workforce. That’s what happens when you have a monopoly on a product that is subject to wild demand. In 1900, Bell handled 5 million calls a day. By 1925, that number was over 50 million. In 1975, it was just shy of 500 million. If Wester Electric — just one part of Bell — was its own company, it would have been the 12th largest company in the U.S. during the 1970s.

Continue reading “How The Bell System Was Built”

Retrotechtacular: Rebuilding A Fire-Ravaged Telephone Exchange

Those who haven’t experienced the destruction of a house fire should consider themselves lucky. The speed with which fire can erase a lifetime of work — or a life, for that matter — is stunning. And the disruption a fire causes for survivors, who often escape the blaze with only the clothes on their backs, is almost unfathomable. To face the task of rebuilding a life with just a few smoke-damaged and waterlogged possessions while wearing only pajamas and slippers is a devastating proposition.

As bad as a residential fire may be, though, its impact is mercifully limited to the occupants. Infrastructure fires are another thing entirely; the disruption they cause is often felt far beyond the building or facility involved. The film below documents a perfect example of this: the 1975 New York Telephone Exchange fire, which swept through the company’s central office facility at the corner of 2nd Avenue and 13th Street in Manhattan and cut off service to 300 blocks of the East Village and Lower East Side neighborhoods.

Continue reading “Retrotechtacular: Rebuilding A Fire-Ravaged Telephone Exchange”

Taking Mechanical Keyboard Sounds To The Next Level

When it comes to mechanical keyboards, there’s no end to the amount of customization that can be done. The size and layout of the keyboard is the first thing to figure out, and then switches, keycaps, and then a bunch of other customizations inside the keyboard like the mounting plate and whether or not to add foam strips and other sound- and vibration-deadening features. Of course some prefer to go the other direction with it as well, omitting the foam and installing keys with a more noticeable click, and still others go even further than that by building a separate machine to make their keyboard activity as disruptive as it could possibly be.

This started as a joke among [ac2ev] and some coworkers, who were already teasing about the distinct sound of the mechanical keyboard. This machine, based on a Teensy microcontroller, sits between any USB keyboard and its host computer, intercepting keystrokes and using a small solenoid to tap on a block of wood every time a keystroke is detected. There’s also a bell inside that rings when the enter key is pressed, similar to the return carriage notification for typewriters, and as an additional touch an audio amplifier with attached speaker plays the Mario power-up sound whenever the caps lock key is pressed.

[ac2ev] notes that this could be pushed to the extreme by running a much larger solenoid powered by mains electricity, but since this was more of a proof-of-concept demonstration for some coworkers the smaller solenoid was used instead. The source code for the build can be found on the project’s GitHub page and there’s also a video of this machine in action here as well. Be careful with noisy mechanical keyboards, though, as the sounds the keys produce can sometimes be decoded to determine what the user is typing.

Spooky Coffin Bell Spooks Passers By On Halloween

Being buried alive isn’t fun, we imagine. Fear of it led to the development of various safety coffin ideas in the 18th and 19th centuries, and [Glen Akins] wonderful Halloween prop riffs on that tradition today. 

The safety coffin was a simple solution for those afraid that this might happen to them. One concept had a bell which was installed above freshly dug graves with a string extending into the coffin. One who found themselves accidentally buried alive could then pull the string to ring the bell and summon help.

[Glen’s] installation eliminates the coffin and the dead body, and simply mounts a bell on a post. Inside, there’s an ultrasonic rangefinder that detects passers by. When someone walks closely enough to the prop, a microcontroller triggers a servo which rings the bell with a haunting urgency.

It’s a simple build, but appropriately installed with its LED lighting, it really does pop. It would be a wonderful way to add atmosphere and mood to a Hallowe’en party or haunted house. We’ve seen some great Hallowe’en hacks over the years, and some of the best are pumpkins. Video after the break.

Continue reading “Spooky Coffin Bell Spooks Passers By On Halloween”

USB Bell Rings In Custom Terminal

Old TeleTypes and even typewriters had bells. Real bells. So that ASCII BEL character is supposed to make an honest to goodness ringing sound. While some modern terminals make a beep from the computer speakers, it isn’t the same. [Tenderlove] must agree, because the turned a Microchip USB to I2C bridge chip into a HID-controlled bell.

The only problem we see is that you have to have a patch to your terminal to ring the bell. We’d love to see some filter for TCP or serial that would catch BEL characters, but on the plus side, it is easy to ring the bell from any sort of application since it responds to normal HID commands.

Continue reading “USB Bell Rings In Custom Terminal”