The Bicycle (and More) Explained

They say a picture is worth a thousand words, but an animation, then, must be worth a million. Make that animation interactive, and… well, we don’t know how many words it is worth, but it is plenty! That’s the idea behind [Bartosz Ciechanowski’s] blog where he uses clever interactive animations to explain the surprisingly complex physics of riding a bicycle.

The first animation lets you view a rider from any angle and control the rider’s pose. Later ones show you how forces act on the rider and bicycle, starting with example wooden boxes and working back up to the original bike rider with force vectors visible. As you move the rider or the bike, the arrows show you the direction and magnitude of force.

Continue reading “The Bicycle (and More) Explained”

Square-Wheeled Bike Is Actually An Amazing Tracked Build

The invention of the wheel is considered one of the crowning achievements of early humanity. Squares don’t roll, after all. [The Q] decided to build a square-wheeled bike anyway, with a neat tracked setup that makes for an awesome visual gag.

The wheels are made out of C-angle steel, making them both stout and incredibly heavy. While they don’t really need the additional structure for strength, they feature spokes which mount a central hub for attaching the “wheels” to a bicycle axle. The squares aren’t designed to roll, though. Instead, they are fitted with gears and rollers, upon which a track made of bicycle chain and tires is fitted. When the rider pedals, this turns the track, propelling the bike along. Cleverly, the track mechanism is neatly hidden by some framing, confusing passers-by.

The riding experience is noisy, thanks to the tracks. There’s also plenty of rolling resistance. It’s unlikely bikes like these will become mainstream transport anytime soon, nor will you see them at the velodrome. Regardless, it’s certainly a great way to turn heads at the park.

Continue reading “Square-Wheeled Bike Is Actually An Amazing Tracked Build”

Riding The Rails By Ebike

As most developed countries around the world continue to modernize their transportation infrastructure with passenger rail, countries in North America have been abandoning railroads for over a century now, assuming that just one more lane will finally solve their traffic problems. Essentially the only upside to the abandonment of railroads has been that it’s possible to build some unique vehicles to explore these tracks and the beautiful yet desolate areas they reach, and [Cam Engineering] is using an ebike to do that along the coast of central California.

Continue reading “Riding The Rails By Ebike”

Tennis Balls Serve As Decent Bicycle Tires That Don’t Easily Puncture

Pneumatic tires provide a great ride, great grip, and yet have one fatal flaw — they’re always getting punctured and leaving you stranded. [The Q] decided to solve this problem with a unique design: tires that use tennis balls as the cushioning medium instead.

The build begins with small cut sections of plastic water pipe. These are used as housings to hold tennis balls, which are pressed in with a unique tool of [The Q]’s own construction. The individual ball assemblies are then bolted into a standard bicycle wheel, and a tread from a regular bike tire is stretched around the outside for grip.

It goes without saying that these tires won’t offer the same quality of ride as regular pneumatic bike tires. Nor will the performance be as good, due to the significant extra unsprung weight. They are eye-catching and fun, however. Plus, if you live in an area with tons of nails or prickles, you might find these are just the ticket. Maybe.

We’ve seen some other great bike hacks before, too.

Continue reading “Tennis Balls Serve As Decent Bicycle Tires That Don’t Easily Puncture”

Tiny Yet Functional Bike Built From Scratch

Sometimes, you just want to go ride your bike in the great outdoors, but you can’t be bothered throwing it in the back of the car. That wouldn’t be a problem if you rode this latest build from [The Q]: a bike small enough to fit in a handbag.

The build starts by customizing a rollerblade wheel to act as the driven rear wheel of the bike. It’s fitted with a tiny sprocket allowing it to be chain driven. Welding some steel tubes then nets a small diamond-layout bike frame. It’s fitted with a chain ring, pedals, and steering assembly just like a full-sized bike, just in absolute miniature.

Riding the bike is “uncomfortable,” in [The Q]’s own terms, but entirely possible. It basically requires the same level of contortion and technique as displayed by the clowns of your local circus. Don’t expect to use it as viable transportation, though. Walking would be much faster.

We’ve seen [The Q] build some wild bikes before, too, like this great hubless design. Video after the break.

Continue reading “Tiny Yet Functional Bike Built From Scratch”

A line art schematic of a bicycle CVT drive. Two large green circles at the bottom have the text "1. Increases speed" where the crank arm would enter the system. A series of cam arms highlighted in red say "2. Converts from rotary to reciprocating motion." Finally, a blue highlighted bearing says "3. Converts from reciprocating back to rotary motion."

A Look Inside Bicycle Gearboxes

While bicycle gearboxes date back to at least the 1920s, they’re relatively unseen in bike racing. One exception is Honda’s race-winning mid-drive gearboxes, and [Alee Denham] gives us a look at what makes these unique drives tick.

Honda has developed three generations of bicycle gearbox as part of their company’s R&D efforts, but none have ever been released as a commercial product. Designed as a way for their engineers to stretch their mental muscles, the gearboxes were only used in bike races and seen at a few trade shows. In 2004, the third gen “derailleur in a box” led to the first gearbox victory in the Downhill World Cup Circuit.

The third gen gearbox differs significantly from the CVT drivetrains in the first and second generation gearboxes, but it is unclear why Honda abandoned the CVT. [Denham] has a nice animation detailing the inner workings of these CVTs based on information from the original patents for these rarely seen gearboxes.

Derailleurs remain the primary drivetrain in racing due to their lighter weight and higher overall efficiency. While still expensive, the decreased maintenance of gearbox drivetrains make a lot of sense for more mundane cycling tasks like commuting or hauling cargo, but only time will tell if the derailleur can be supplanted on the track and trail.

For more on bicycle drivetrains, check out this chainless digital drivetrain or the pros and cons of e-bike conversions.

Continue reading “A Look Inside Bicycle Gearboxes”

A white longtail cargo bike sits on grass with fenced-in planters behind it. The bike has a basket made of black metal tubes on the front and a passenger compartment behind the rider seat for children made of similar black metal tubes. A white canopy is above the passenger compartment and a solar panel sits atop the canopy.

Solar Powered E-bike Replaces Car Trips

E-bikes can replace car trips for some people, and adding a solar panel can make the fun last longer. [Luke] did some heavy modifications to his RadWagon to make it better, stronger, and faster than it was before.

The first step was replacing the stock 750 W controller with a 1500 W model to give the motor twice the power. [Luke] plans to replace the motor if it gets fried pushing too much juice, but is planning on just being careful for now. To stop this super-powered ride, he swapped the stock mechanical discs out for a hydraulic set which should be more reliable, especially when loading down this cargo bike.

On top of these performance enhancements, he also added a 50 W solar panel and maximum power point tracking (MPPT) charge controller to give the bike a potential 50% charge every day. Along with the OEM kid carrier and roof, this bike can haul kids and groceries while laughing at any hills that might come its way.

Checkout this other solar e-bike or this one making a trip around the world for more fun in the sun.