E-Ink Equipped Sourdough Starter Jar

One of the unexpected side effects of our this pandemic is a sudden growth in the global population of captive colonies of Lactobacillus bacteria and yeast. Also known as sourdough starters, they are usually found in jars with curious names written on top, living off a mixture of flour and water. They require close monitoring to keep them healthy and to determine when they are ready for baking. [Noah Feehan] has been working to instrument and automate the process for the past two years, and has created a high-tech jar to keep an eye on his sourdough starter.

For a sourdough starter to stay active, it must be kept within a certain temperature range, and performance is measured by how much the level inside the jar rises. Existing open source and commercial projects monitor these two parameters and transmit data out, but [Noah] wanted to include a few more features. The height of a sourdough starter rises due to the production of CO2, so he added an SCD-30 sensor module, which includes a temperature and humidity sensor. For level monitoring, an VL6180 time-of-flight sensor is mounted over a hole on top of the jar. [Noah] wanted to be able to see recent CO2 production and height stats right on the jar, a ESP32 module with onboard E-ink display was used. To draw air over the CO2 sensor at a constant rate, a small extraction fan was also added. Power is provided by a small LiPo battery. For long term logging, the data is sent over MQTT to a server running Mycodo environmental regulation software.

There are still several software improvements [Noah] would like to make, including battery life, user interface and alerts, but everything is open-source and available on GitHub, so feel free to jump in and build your own.

A Four-Year-Old Event Badge Makes An Environmental Sensor

By now we’re all used to the requirements imposed by the pandemic, of social distancing and wearing masks indoors. But as [polyfloyd] and the rest of the board at Bitlair hackerspace in Amersfoort in the Netherlands were concerned, there are still risk factors to consider when inside a building.  Without fresh air the concentration of virus-bearing droplets can increase, and the best way they could think of to monitor this was to install a set of CO2 sensors. To run them they didn’t need to buy any new hardware, instead they turned to a set of event badges, from 2017s SHA hacker camp.

This badge sported an ESP32 module with an e-ink screen, and of most interest for this project it still has a supported software platform and comes with a handy expansion connector on the rear. The commonly-available MH-Z19 infra-red CO2 sensor and BME280 humidity sensor fit on a PCB that follows the shape of the badge with a protrusion at the top on which they appear as an integrated unit. Processing those readings is a MicroPython badge app that issues warnings via MQTT and plots a CO2 graph on the screen. Everything is available, both the hardware in a GitHub repository and the software as a badge.team app.

We applaud anyone who makes use of an event badge for a project, and especially so for using one years after the event. The SHA badge and its descendants are uniquely suited to this through their well-supported platform, so if you have one in a drawer we’d urge you to pull it out and give it a try.