When The EU Speaks, Everyone Charges The Same Way

The moment everyone has been talking about for years has finally arrived, the European Union’s mandating of USB charging on all portable electronic devices is now in force. While it does not extend beyond Europe, it means that there is a de facto abandonment of proprietary chargers in other territories too. It applies to all mobile phones, tablets, digital cameras, headphones, headsets, game consoles, portable speakers, e-readers, keyboards, mice, portable navigation systems and earbuds, and from early 2026 it will be extended to laptops.

Hackaday readers will probably not need persuading as to the benefits of a unified charger, and truth be told, there will be very few devices that haven’t made the change already. But perhaps there’s something more interesting at work here, for this moment seals the place of USB-C as a DC power connector rather than as a data connector that can also deliver power.

Back in 2016 we lamented the parlous state of low voltage DC power standards, and in the time since then we’ve arrived at a standard involving ubiquitous and commoditised power supplies, cables, and modules which we can use for almost any reasonable power requirement. You can thank the EU for that mobile phone now having the same socket as its competitor, but you can thank the USB Implementers Forum for making DC power much simpler.

How To Build A Small Solar Power System

We live in an exciting time with respect to electrical power, one in which it has never been easier to break free from mains electricity, and low-frequency AC power in general. A confluence of lower-power appliances and devices using low-voltage external switch-mode supplies, readily available solar panels and electronic modules, and inexpensive high-capacity batteries, means that being your own power provider can be as simple as making an online order.

But which parts should you choose? Low Tech Magazine has the answer, in the form of a guide to building a small solar power system. The result is an extremely comprehensive guide, and though it’s written for a general audience there’s still plenty of information for the Hackaday reader.

Perhaps the most important part is that it’s demystifying the subject, there in front of us are a set of pretty straightforward recipes for personal power. The computer this is being written on spends a significant proportion of its time on the road with the ever-present company of a very hefty USB-C power pack for example, and the realization that a not-too-expensive solar panel and USB PD source could lessen the range anxiety and constant search for a train seat with a socket for a writer on the move is quite a powerful one.

Take a look and see whether your life could use bit of inexpensive off-grid power, meanwhile we’re quite pleased that the USB-C PD standard has eased some of the DC problems we expressed frustration at back in 2016.

Breakers for the system on a DIN rail, with markings like 48V and 24V and 12V and so on on the bottom, and two hefty devices of some kind on the bottom, probably MPTT controllers, with hefty wires running from them.

Low-Voltage DC Network Build Incited By Solar Panels

Nowadays, some people in Europe worry about energy prices climbing, and even if all the related problems disappear overnight, we’ll no doubt be seeing some amounts of price increase. As a hacker, you’re in a good position to evaluate the energy consuming devices at your home, and maybe even do something about them. Well, [Peter] put some solar panels on his roof, but couldn’t quite figure out a decent way to legally tie them into the public grid or at least his flat’s 220V network. Naturally, a good solution was to create an independent low-voltage DC network in parallel and put a bunch of devices on it instead!

He went with 48V, since it’s a voltage that’s high enough to be efficient, easy to get equipment like DC-DCs for, safe when it comes to legal matters concerned, and overall compatible with his solar panel setup. Since then, he’s been putting devices like laptops, chargers and lamps onto the DC rail instead of having them be plugged in, and his home infrastructure, which includes a rack full of Raspberry Pi boards, has been quite content running 24/7 from the 48V rail. There’s a backup PSU from regular AC in case of overcast weather, and in case of grid power failures, two hefty LiFePO4 accumulators will run all the 48V-connected appliances for up to two and a half days.

The setup has produced and consumed 115kWh within the first two months – a hefty contribution to a hacker’s energy independence project, and there’s enough specifics in the blog post for all your inspiration needs. This project is a reminder that low-voltage DC network projects are a decent choice on a local scale – we’ve seen quite viable proof-of-concept projects done at hackercamps, but you can just build a small DC UPS if you’re only looking to dip your feet in. Perhaps, soon we’ll figure out a wall socket for such networks, too.

That Decentralised Low Voltage Local DC Power Grid, How Did It Do?

Early on in the year, Hackaday published one of its short daily pieces about plans from the people behind altpwr.net for a low voltage DC power grid slated for the summer’s SHACamp 2017 hacker camp in the Netherlands. At the time when it was being written in the chill of a Northern Hemisphere January the event seemed so far away, but as the summer fades away along with the deep tan many SHACamp attendees gained in the Dutch sunlight it’s worth going back and revisiting the project. Did they manage it, and how did they do? This isn’t really part of our coverage of SHACamp itself, merely an incidental story that happens to have the hacker camp as its theatre.  Continue reading “That Decentralised Low Voltage Local DC Power Grid, How Did It Do?”

A Bold Experiment In A Decentralised Low Voltage Local DC Power Grid

January, for many of us in the Northern Hemisphere, can be a depressing month. It’s cold or wet depending where you live, the days are still a bit short, and the summer still seems an awfully long way away. You console yourself by booking a ticket to a hacker camp, but the seven months or so you’ll have to wait seems interminable.

If you want an interesting project to look forward to, take a look at [Benadski]’s idea for a decentralised low voltage local DC power grid for the upcoming SHA 2017 hacker camp in the Netherlands. The idea is to create a network that is both safe and open for hacking, allowing those with an interest in personal power generation to both have an available low-voltage power source and share their surplus power with other attendees.

The voltage is quoted as being 42V DC +/- 15%, which keeps it safely under the 50V limit set by the European Low Voltage Directive. Individuals can request a single 4A connection to the system, and villages can have a pair of 16A connections, which should supply enough for most needs. Users will need to provide their own inverters to connect their 5V or 12V appliances, fortunately a market served by numerous modules from your favourite Far Eastern sales portal.

This project will never be the solution to all power distribution needs, but to be fair that is probably not the intention. It does however provide a platform for experimentation, collaboration, and data gathering for those interested in the field, and since it is intended to make an appearance at future hacker camps there should be the opportunity for all that built up expertise to make it better over time.

We’ve touched on this subject before here at Hackaday, with our look at the availability of standard low voltage DC domestic connectors.

Wind turbine image: Glogger (CC BY-SA 3.0) via Wikimedia Commons.