A Handheld Replica Sound Voltex Game

Sound Voltex is a music game from Konami; in fact, it’s a whole series of arcade games! [Luke] is a big fan, so decided to build a hardware handheld to play the Unnamed Sound Voltex Clone.  No—Voltex is not a typo, that’s the name.

If you’re unfamiliar, the Unnamed SDVX Clone is basically a community-built game that’s inspired by the original Konami titles. [Luke] decided to build a handheld console for playing the game, which is more akin to the arcade experience versus playing it on a desktop computer.

[Luke’s] build relies on a Raspberry Pi 4B, which donates its considerable processing power and buckets of RAM to the project. The Pi was installed into a 3D-printed case with a battery pack, touchscreen, and speakers, along with multiple arcade buttons  and rotary encoders for controlling the game. Booting the Pi and clicking the icon on the desktop starts up the Unnamed Sound Voltex Clone. The game itself will be fairly familiar to any rhythm game player, though it’s a tough more sophisticated than Audiosurf. [Luke] demonstrates the gameplay on YouTube, and the finished project looks great.

We always love seeing handheld hacks, from PlayStations that never were to retro DIY creations. Video after the break.

Continue reading “A Handheld Replica Sound Voltex Game”

A white handheld with a centered screen and Xbox-style controllers flanking an 8" screen. Speaker grilles are visible below the controllers in the face of the device.

Beth Deck Is A Framework-Powered Gaming Handheld

DIY gaming handhelds have long been the purview of the advanced hacker, with custom enclosures and fiddly soldering making it a project not for the faint of heart. [Beth Le] now brings us a custom handheld for the beginner that can be assembled in 15 minutes and doesn’t require any soldering.

Three 3D printed panels sit on a black surface. The white back has cooling holes in it (top), a green center plate holds a Framework laptop battery (middle), and the front frame holds the speakers, controllers, and screen (bottom)

These claims might seem suspicious at first, but the fact that the build is powered by a Framework mainboard makes the dream seem attainable. Using an 8″ touchscreen and a rehoused mobile device controller, the 3D printed enclosure turns the PCB and battery into an interesting alternative to a Steam Deck.

[Beth] recommends waiting for the forthcoming revision 2 to make your own as she is working on refining the model. She also suggests printing in PC or PETG since PLA is too brittle and ABS warping can be an issue for tolerances with the pogo pins. In any case, this is definitely a project to keep your eye on if you enjoy gaming on the go.

As you know, we love Framework around here and the Cambrian Explosion of high-powered custom builds it’s enabled. This isn’t the first time we’ve seen a Framework-Powered handheld either. If you’re looking for a different form factor, we’ve also seen portable all-in-ones, keyboard PCs, and slabtops too.

The UMPC powered up, case-less showing the black PCB, with the display standing upwards and showing a blue colour scheme desktop with a CLI terminal open. To the right of it is one of the UMPCs that served as an inspiration for this project.

Bringing The UMPCs Back With A Pi Zero

Miss PDAs and UMPCs? You wouldn’t be the only one, and it’s a joy to see someone take the future into their own hands. [Icepat]’s dream is reviving UMPCs as a concept, and he’s bringing forth a pretty convincing hardware-backed argument in form of the Pocket Z project. For the hardware design, he’s hired two engineers, [Adam Nowak] and [Marcin Turek], and the 7-inch Pocket Z7 version is coming up quite nicely!

The Hackaday.io project shows an impressive gallery of inspiration devices front and center, and with these in mind, the first version of the 7-inch UMPC sets the bar high. With a 1024×600 parallel RGB (DPI) touchscreen display, an ATMega32U4-controlled keyboard, battery-ready power circuitry, and a socketed Pi Zero for brains, this device shows a promising future for the project, and we can’t wait to see how it progresses.

While it’s not a finished project just yet, this effort brings enough inspiration all around, from past device highlights to technical choices, and it’s worth visiting it just for the sentiment alone. Looking at our own posts, UMPCs are indeed resurfacing, after a decade-long hiatus – here’s a Sidekick-like UMPC with a Raspberry Pi, that even got an impressive upgrade a year later! As for PDAs, the Sharp memory LCD and Blackberry keyboard combination has birthed a good few projects recently, and, who can forget about the last decade’s introductions to the scene.

Using A Framework Mainboard For A Custom Gaming Handheld

The nearly final prototype case for the handheld Framework-based gaming system. (Credit: TommyB, YouTube)
The nearly final prototype case for the handheld Framework-based gaming system. (Credit: TommyB, YouTube)

Building your own handheld gaming console has been a popular project for many years, but recently it has become significantly easier to get a lot of power into a small package. Like many others, [TommyB] made his own Raspberry Pi SBC-based handheld in the past, which results in a rather bulky and underpowered package. A more performant solution would be to stuff laptop guts into a handheld case, but until Framework came onto the scene this wasn’t easy and would get you a sloppy one-off solution. With [TommyB]’s current handheld project he uses a standard Framework laptop mainboard, along with the official battery to get a very capable gaming system.

Getting the ergonomics and fit for the components just right took many tries, but eventually a prototype shell was designed that fits the Framework mainboard, the battery, twin Framework speakers, an 8″ LCD panel from Waveshare (connected via USB-C to HDMI) and mechanical switches for the buttons. These switches connect to an RP2040-based board that runs the GP2040-CE firmware, allowing the operating system to detect it as an XBox controller. Although still far from finished, it shows just how beneficial standard laptop parts are, with a massive gap in the market where Framework could make its own handheld shell available. We’re looking forward to [TommyB] demonstrating the finished version of his Framework handheld, and the inevitable upgrade from the 11th-gen Intel mainboard to one of the sparkling new mainboards with even better specs.

Thanks to [Keith Olson] for the tip.

Continue reading “Using A Framework Mainboard For A Custom Gaming Handheld”

The Best Kind Of Handheld Gaming Is Homemade

[CNCDan] previously dabbled with Raspberry Pi CM4-powered gaming handhelds but was itching for something more powerful. Starting in May 2023, he embarked on building an Intel NUC7i5BNK-powered handheld dubbed NucDeck.

As he goes over the feature list, it sounds like a commercially available console. A 1024 x 600 screen provides a good balance of fidelity and performance. Stereo-chambered speakers provide good front-facing sound. Two thumbsticks with gyro aim assist, two hall effect triggers, and many buttons round out the input. Depending on the mode, the Raspberry Pi Pico provides input as it can emulate a mouse and keyboard or a more traditional gamepad. A small OLED screen shows battery status, input mode, and other options. This all fits on four custom PCBs, communicating over I2C. 6000 mAh of battery allows for a decent three hours of run time for simpler emulators and closer to an hour for more modern games.

The whole design is geared around easily obtainable parts, and the files are open-source and on GitHub with PDFs and detailed build instructions. We see plenty of gorgeous builds here on Hackaday, but everything from the gorgeous translucent case to the build instructions screams how much time and love has been put into this. Of course, we’ve seen some exciting hacks with the steam deck (such as this one emulating a printer), so we can only imagine what sort of things you can do once you add any new hardware features you’d like.

Continue reading “The Best Kind Of Handheld Gaming Is Homemade”

A handheld computer made on a piece of prototyping board running a Tetris clone

Tetris Clone Uses 1000 Lines Of Code, And Nothing Else

If you’re programming on a modern computer, you typically make use of lots of work done by other people. There’s operating systems to abstract away the complexities of modern hardware, standard libraries to implement common tasks, and tons of third-party libraries that prevent you from having to reinvent the wheel all the time: you’re definitely not the first one trying to draw graphics onto a screen or store data in a file.

But if it’s the wheels you’re most interested in, then there’s nothing wrong with inventing new ones now and then. [Michal Zalewski], for instance, has made a beautiful Tetris clone in just 1000 lines of C, without using anyone else’s code.

The purpose of this exercise is to show that it’s possible to make a game with graphics comparable to modern, complex computing systems, without relying on operating systems or third-party libraries. The hardware consists of not much more than an ARM Cortex-M7 MCU, a 240×320 LCD screen and a few buttons soldered onto a piece of prototyping board, all powered by a set of AAA batteries.

The software is similarly spartan: just pure C code running directly on the CPU core. Graphic elements, some generated by AI and others hand-drawn, are stored in memory as plain bitmaps. They are manipulated by 150 lines of code that shuffles sprites around the display at a speed high enough to generate smooth motion. Game mechanics take up about 250 lines, while sound consists of simple square-wave chiptunes written in just 50 lines of code.

[Michal]’s code is very well documented, and his blog post gives even more details about all the problems he had to solve. One example is the length of keypresses: when do you interpret a keypress as a single “press”, and when does it become “press and hold”? Apparently, waiting 250 ms after the first press and 100 ms after subsequent ones does the trick. [Michal] is a bit of an expert on bare-bones game programming by now: he has previously pushed several 8-bit micros to their very limits. Third-party libraries can make your programming life a lot easier, but it’s good to reflect on the dangers of relying too much on other people’s code.

Continue reading Tetris Clone Uses 1000 Lines Of Code, And Nothing Else”

A handheld game console made from bare PCBs

Minimalist Homebrew Hardware Recreates Arcade Classics

Classic video games might look primitive by today’s standards, but the addictive gameplay of Breakout or Pac-Man remains fun no matter what decade you were born in. Keeping the relevant hardware running becomes harder as the years pile up however, so when [Michal Zalewski] decided to introduce his kids to classic video games, he didn’t dig up his old game consoles. Instead, he decided to recreate several games from scratch using the bare minimum amount of hardware needed.

The first project is a copy of Snake, the arcade classic that millennials will recognize from their Nokia phones. [Michal] made an initial version using an ATmega328P with an 8×8 LED matrix as a display, but quickly upgraded the hardware to a 16×16 display powered by an ATmega644, and added an LED seven-segment display to show the score. All parts are simply soldered onto a piece of prototyping board, with no need for any custom PCBs or enclosures.

Game #2 is a side-scrolling space shooter called Dino in Space. This game runs on an ATmega1284 and uses a 4×20 character text display, allowing simple graphics as well as an on-screen score counter. Similar hardware, although with a 128×64 graphic OLED screen, powered game #3, a Breakout/Arkanoid clone called Blockbuster 7000.

[Michal]’s blog post is filled with interesting tips for real-life game programming. For example, a true random number generator creates a rather odd-looking bunch of asteroids in space – tweaking the distribution to make it a bit more uniform greatly enhances the game’s playability. Source files for all games are available on [Michal]’s website, and include a description of the exact hardware setup needed for each game.

Recreating Snake on custom hardware is sort of a rite of passage for microcontroller hackers, as you can see in  many impressive projects. Breakout-style games can also be implemented on various hardware platforms, including analog oscilloscopes.