This Frequency Generator Knows How To Get Down

What kind of clever things could you do with a signal that had a period of 2 hours? Or 20? Any ideas? No seriously, tell us. Because [Joseph Eoff] has come up with a way to produce incredibly low frequency signals that stretch out for hours, and we’d love to figure out what we can do with it.

To be fair, it’s not like [Joseph] has any ideas either. He thought it would be an interesting project, and figures now that he has the technology, maybe some application will come to him. They say that if you’ve got a hammer everything looks like a nail, so maybe the next project he sends our way will be a sinusoidal fish feeder.

[Joseph] says doing the software side of things with Pure Data wasn’t a problem, but getting it out of the computer proved to be tricky. It turns out that your average computer sound card isn’t equipped to handle frequencies down into the millihertz range (big surprise), so they need to be coaxed out with some extra hardware. Using a simple circuit not unlike an AM demodulator, he’s able to extract the low-frequency signal from a 16 kHz carrier.

So if you ever find yourself in need of a handful of hertz, now you’ve got the tool to generate them. At least it’s more practical than how they used to generate low frequency signals back in the 1900s.

The Crystal (Testing) Method

It used to be any good electronics experimenter had a bag full of crystals because you never knew what frequency you might need. These days, you are likely to have far fewer because you usually just need one reference frequency and derive all the other frequencies from it. But how can you test a crystal? As [Mousa] points out in a recent video, you can’t test it with a multimeter.

His approach is simple: Monitor a function generator with an oscilloscope, but put the crystal under test in series. Then you move the frequency along until you see the voltage on the oscilloscope peak. That frequency should match the crystal’s operating frequency.

Continue reading “The Crystal (Testing) Method”

Retrotechtacular: The Trautonium Was Elemental To Electronic Music

Electrical engineer and music enthusiast [Freidrich Trautwein] was dissatisfied. He believed that the equal tempered scale of the piano limited a player’s room for expression. And so in 1930, [Trautwein] and an accomplished pianist named [Oskar Sala] began work on an electro-mechanical instrument that would bring the glissando of the string section’s fretless fingerboards to the keyboard player. [Trautwein] called his creation the Trautonium.

Sound is produced in the instrument by sawtooth frequency generators. It is then passed through filters and manipulated by the resistive string-based manuals. Frequency and intonation are varied relative to the position of the player’s finger along a length of non-conductive string and to the amount of pressure applied. This resistive string is suspended above a conductive metal strip between a pair of posts. A small voltage is applied to the posts so that when the string touches the metal strip below, the player manipulates a voltage-controlled oscillator. A series of metal tongues, also non-conductive, hover above the string. These are placed at scale intervals and can be used like keys.

This early synthesizer is capable of producing many kinds of sounds, from crisp chirps to wet, slapping sounds and everything in between. In fact, all of the sound effects in Alfred Hitchcock’s thriller The Birds were produced on a modified Trautonium by the instrument’s one and only master, [Oskar Sala]. He went on to score hundreds of films by watching them with the Trautonium at his fingertips, recording and layering his compositions into an eerie wall of sound.

Continue reading “Retrotechtacular: The Trautonium Was Elemental To Electronic Music”

Direct Digital Synthesis (DDS) Explained By [Bil Herd]

One of the acronyms you may hear thrown around is DDS which stands for Direct Digital Synthesis. DDS can be as simple as taking a digital value — a collection of ones and zeroes — and processing it through a Digital to Analog Converter (DAC) circuit. For example, if the digital source is the output of a counter that counts up to a maximum value and resets then the output of the DAC would be a ramp (analog signal) that increases in voltage until it resets back to its starting voltage.

This concept can be very useful for creating signals for use in a project or as a poor-man’s version of a signal or function generator. With this in mind I set out here to demonstrate some basic waveforms using programmable logic for flexibility, and a small collection of resistors to act as a cheap DAC. In the end I will also demonstrate an off-the-shelf and inexpensive DDS chip that can be used with any of the popular micro-controller boards available that support SPI serial communication.

All of the topics covered in the video are also discussed further after the break.

Continue reading “Direct Digital Synthesis (DDS) Explained By [Bil Herd]”

Hackaday Links: August 29, 2010

Hotel room door lock picking

Here’s further proof that you should never leave anything of value in your hotel room. We’re not worried about someone getting in while the room is occupied. But these methods of defeating the chain lock and opening the door without a keycard (YouTube login required) do show how easy it is for the bad guys to steal your stuff.

iPhone frequency generator

Need one more way to make that iPhone a useful lab tool? Why not use it as a frequency generator. Start with a free app and mix in an audio cable with test leads and you’re in business.

Drag Soldering

[Andrei] sent us a link to a video about drag soldering. This is a method of soldering fine-pitch chips using a small bit of solder and a fat solder tip. The link he sent is dead now but we found another great example of the process. We were just using this method earlier in the week to solder a TSSOP38 package for an upcoming project and it worked like a charm.

Laser etched PCB

Here’s some art in PCB form thanks to a laser. We thought this might be interesting to share after seeing those art pieces made from old circuit boards. This example is laser etched, but not directly. As you probably guessed, the copper clad board is coated with resist and the laser etches some of it away. Whatever got zapped by the laser dissolves when the board is placed in acid, leaving [Riley Porter’s] art behind.