Toyota is going through a bit of a Kodak moment right now, being that like the film giant they absolutely blundered the adoption of a revolutionary technology. In Kodak’s case it was the adoption of the digital camera which they nearly completely ignored; Toyota is now becoming similarly infamous for refusing to take part in the electric car boom, instead placing all of their faith in hybrid drivetrains and hydrogen fuel cell technologies. Whether or not Toyota can wake up in time to avoid a complete Kodak-style collapse remains to be seen, but they have been making some amazing claims about battery technology that is at least raising some eyebrows. Continue reading “Toyota Makes Grand Promises On Battery Tech”
solid-state battery10 Articles
Battery Engineering Hack Chat Gets Charged Up
Turn the clock back a couple of decades, and the only time the average person would have given much thought to batteries was when the power would go out, and they suddenly needed to juice up their flashlight or portable radio. But today, high-capacity batteries have become part and parcel to our increasingly digital lifestyle. In fact, there’s an excellent chance the device your reading this on is currently running on battery power, or at least, is capable of it.
So let’s get to know batteries better. What’s the chemical process that allows them to work? For that matter, what even is a battery in the first place?
It’s these questions, and more, that made up this week’s Battery Engineering Hack Chat with Dave Sopchak. Our last Hack Chat of 2022 ended up being one of the longest in recent memory, with the conversation starting over an hour before the scheduled kickoff and running another half hour beyond when emcee Dan Maloney officially made his closing remarks. Not bad for a topic that so often gets taken for granted.
Continue reading “Battery Engineering Hack Chat Gets Charged Up”
New Part Day: The Smallest Batteries You Have Ever Seen
We’re used to some pretty small batteries in miniaturized electronics, thanks to the manufacture of lithium-polymer pouch cells. But they’re still pretty big, and they’re hardly the most stable power storage solution. The French company ITEN may have an answer for designers of micro-power devices though, in the form of a range of tiny surface-mount solid-state rechargeable lithium batteries. These come in a range of capacities from 0.1 mAh to 0.5 mAh, and in a 3.2 by 2.5 mm package look very much like any other slightly larger SMD chip component.
These devices are most likely to be found in applications such as remote wireless sensors, where they can store the energy from a small solar cell or similar to produce the burst of power required to transmit a packet of data as well as the tiny current required to keep things ticking over. The solid state chemistry should provide a long life and lack of leaks. For now they have some evaluation kits on offer, and unless we missed something, no full data sheet. We’d be particularly interested to learn about their temperature sensitivity when it comes to soldering, as we’ve taken to heart the warnings about soldering to more traditional lithium cells.
Via CNX Software.
The State Of Play In Solid State Batteries
Electric vehicles are slowly but surely snatching market share from their combustion-engined forbearers. However, range and charging speed remain major sticking points for customers, and are a prime selling point for any modern EV. Battery technology is front and center when it comes to improving these numbers.
Solid-state batteries could mark a step-change in performance in these areas, and the race to get them to market is starting to heat up. Let’s take a look at the current state of play.
Continue reading “The State Of Play In Solid State Batteries”
Murata To Deliver Solid State Batteries To Market In The Fall
Solid state batteries have long been promised to us as the solution to our energy storage needs. Theoretically capable of greater storage densities than existing lithium-ion and lithium-polymer cells, while being far safer to boot, they would offer a huge performance boost in all manner of applications.
For those of us dreaming of a 1,000-mile range electric car or a 14-kilowatt power drill, the simple fact remains that the technology just isn’t quite there yet. However, Murata Manufacturing Co., Ltd. has just announced that it plans to ship solid state batteries in the fall, which from a glance at the calendar is just weeks away.
It’s exciting news, and we’re sure you’re dying to know – just what are they planning to ship, and how capable are the batteries? Let’s dive in.
Continue reading “Murata To Deliver Solid State Batteries To Market In The Fall”
Tetris Handheld Powered By Tritium Cell, Eventually
The idea of a tritium power cell is pretty straightforward: stick enough of the tiny glowing tubes to a photovoltaic panel and your DIY “nuclear battery” will generate energy for the next decade or so. Only problem is that the power produced, measured in a few microwatts, isn’t enough to do much with. But as [Ian Charnas] demonstrates in his latest video, you can eke some real-world use out of such a cell by storing up its power over a long enough period.
As with previous projects we’ve seen, [Ian] builds his cell by sandwiching an array of keychain-sized tritium tubes between two solar panels. Isolated from any outside light, power produced by the panels is the result of the weak green glow given off by the tube’s phosphorus coating as it gets bombarded with electrons. The panels are then used to charge a bank of thin-film solid state batteries, which are notable for their exceptionally low self-discharge rate.
Some quick math told [Ian] that a week of charging should build up enough of a charge to power a knock-off handheld Tetris game for about 10 minutes. Unfortunately, after waiting the prescribed amount of time, he got only a few seconds of runtime out of his hacked together power source.
His best guess is that he got a bad batch of thin-film batteries, but since he could no longer find the exact part number he used originally, he had to design a whole new PCB for the second attempt. After waiting two long months to switch the game on this time, he was able to play for nearly an hour before his homebrew nuclear energy source was depleted.
We wouldn’t consider this terribly practical from a gaming standpoint, but like the solar harvesting handheld game we covered last year, it’s an interesting demonstration of how even a minuscule amount of power can be put to work for intermittent applications. Here it’s a short bout of wonky Tetris, but the concept could just as easily be applied to an off-grid sensor.
Continue reading “Tetris Handheld Powered By Tritium Cell, Eventually”
BMW Pushing Hard For Solid-State Battery Tech; Plans Demo By 2025
Plenty of development is ongoing in the world of lithium batteries for use in electric vehicles. Automakers are scrapping for every little percentage gain to add a few miles of range over their competitors, with efforts to reduce charging times just as frantic as well.
Of course, the real win would be to succeed in bringing a bigger, game-changing battery to market. Solid state batteries fit the bill, potentially offering far greater performance than their traditional lithium counterparts. BMW think there’s merit in the technology, and have announced they intend to show off a solid-state battery vehicle by 2025.
Continue reading “BMW Pushing Hard For Solid-State Battery Tech; Plans Demo By 2025”