Wearable Neon Necklaces Run On Battery Power

We typically think of neon signs as big commercial advertisements, hanging inside windows and lofted on tall signposts outside highway-adjacent businesses. [James Akers] has gone the other route with a fashionable build, creating little wearable neon necklaces that glow beautifully in just the same way.

Aiming for small scale, [James] began with 6 mm blue phosphor glass tube, which was formed to reference Pink Pony Club, one of Chappell Roan’s more popular songs. The glass was then filled with pure neon up to a relatively low pressure of just 8 torr. This was an intentional choice to create a more conductive lamp that would be easier to run off a battery supply. The use of pure neon also made the tubes easy to repair in the event they had a leak and needed a refill. A Midget Script gas tube power supply is used to drive the tiny tubes from DC power. In testing, the tubes draw just 0.78 amps at 11.8 volts. It’s not a light current draw, but for neon, it’s pretty good—and you could easily carry a battery pack to run it for an hour or three without issue.

If you’re not a glass blower, fear not—you can always make stuff that has a similar visual effect with some LEDs and creativity. Meanwhile, if you’ve got your own neon creations on the go—perhaps for Halloween?—don’t hesitate to light up the tipsline!

When Is Your Pyrex Not The Pyrex You Expect?

It’s not often that Hackaday brings you something from a cooking channel, but [I Want To Cook] has a fascinating look at Pyrex glassware that’s definitely worth watching. If you know anything about Pyrex it’s probably that it’s the glass you’ll see in laboratories and many pieces of cookware, and its special trick is that it can handle high temperatures. The video takes a look at this, and reveals that not all Pyrex is the same.

Pyrex was a Corning product from the early 20th century, and aside from its many laboratory and industrial applications has been the go-to brand for casserole dishes and much more in the kitchen ever since. It’s a borosilicate glass, which is what gives it the special properties, or at least in some cases it used to be a borosilicate glass. It seems that modern-day American Pyrex for the kitchen is instead a soda glass, which while it still makes a fine pie dish, doesn’t quite have the properties of the original.

The video explains some of the differences, as well as revealing that the American version is branded in lower case as pyrex while the European version is branded uppercase as PYREX and retains the borosilicate formulation. Frustratingly there’s no quick way to definitively tell whether a piece of lower-case pyrex is soda glass or not, because the brand switch happened before the formulation switch.

In all probability in the kitchen it makes little difference which version you own, because most users won’t give it the extreme thermal shock required to break the soda version. But some Hackaday readers do plenty of experiments pushing the limits of their glassware, so it’s as well to know that seeking out an older PYREX dish could be a good move.

If you’d like to know more about glass, we’ve got you covered.

Continue reading “When Is Your Pyrex Not The Pyrex You Expect?”

A variety of red and black glass objects are shown on a white background. In the foreground, there are two black spiral-patterned earrings. To the left is a red and black shape with three points on the top. On the right, a deformed glass sheet is shown bent over concentric red and black glass rings. In the center top is a red glass vase with a roughly-textured exterior.

Paste Extrusion For 3D Printing Glass And Eggshells

In contrast to the success of their molten-plastic cousins, paste extrusion 3D printers have never really attained much popularity. This is shame because, as the [Hand and Machine] research group at the University of New Mexico demonstrate, you can use them to print with some really interesting materials, including glass and eggshell. Links to the respective research papers are here: glass and eggshells, with presentations in the supplemental materials.

To print with glass, the researchers created a clay-like paste out of glass frit, methyl cellulose and xanthan gum as shear-thinning binders, and water. They used a vacuum chamber to remove bubbles, then extruded the paste from a clay 3D printer. After letting the resulting parts dry, they fired them in a kiln at approximately 750 ℃ to burn away the binder and sinter the frit. This introduced some shrinkage, but it was controllable enough to at least make decorative parts, and it might be predictable enough to make functional parts after some post-processing.

Path generation for the printer was an interesting problem; the printer couldn’t start and stop extrusion quickly, so [Hand and Machine] developed a custom slicer to generate tool paths that minimize material leakage. To avoid glass walls collapsing during firing, they also wrote another slicer to maintain constant wall thicknesses.

The process for printing with eggshell was similar: the researchers ground eggshells into a powder, mixed this with water, methyl cellulose and xanthan gum, and printed with the resulting paste. After drying, the parts didn’t need any additional processing. The major advantage of these parts is their biodegradability, as the researchers demonstrated by printing a biodegradable pot for plants. To be honest, we don’t think that this will be as useful an innovation for hackers as the glass could be, but it does demonstrate the abilities of paste extrusion.

The same team has previously used a paste printer to 3D print in metal. If you don’t have a paste printer, it’s also possible to print glass using a laser cutter, or you could always make your own paste extruder.

3D Print Glass, Using Accessible Techniques

When seeing a story from MIT’s Lincoln Labs that promises 3D printing glass, our first reaction was that it might use some rare or novel chemicals, and certainly a super-high-tech printer. Perhaps it was some form of high-temperature laser sintering, unlikely to be within the reach of mere mortals. How wrong we were, because these boffins have developed a way to 3D print a glass-like material using easy-to-source materials and commonly available equipment.

The print medium is sodium silicate solution, commonly known as waterglass, mixed with silica and other inorganic nanoparticles. It’s referred to as an ink, and it appears to be printed using a technique very similar to the FDM printers we all know. The real magic comes in the curing process, though, because instead of being fired in a special furnace, these models are heated to 200 Celsius in an oil bath. They can then be solvent cleaned and are ready for use. The result may not be the fine crystal glass you may be expecting, but we can certainly see plenty of uses for it should it be turned into a commercial product. Certainly more convenient than sintering with a laser cutter.

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Grasshopper Typewriter

Do you consider your keyboard to be a fragile thing? Meet the glass keyboard by [BranchNo9329], which even has a glass PCB. At least, I think the whole thing is glass.

The back side of an all-glass keyboard. Yeah.
Image via [BranchNo9329] via reddit
There are so frustratingly few details that this might as well have been a centerfold, but I thought you all should see it just the same. What we do have are several pictures and a couple of really short videos, so dive in.

I can tell you that [BranchNo2939] chose a glass substrate mainly due to curiosity about its durability compared with FR4. And that the copper circuitry was applied with physical vapor deposition (PVD) technology.

Apparently one of [BranchNo2939]’s friends is researching the bonding of copper on to glass panels, so they thought they’d give a keyboard a go. Right now the thing is incomplete — apparently there’s going to be RGB. Because of course there’s going to be RGB. Continue reading “Keebin’ With Kristina: The One With The Grasshopper Typewriter”

The “Unbreakable” Beer Glasses Of East Germany

We like drinking out of glass. In many ways, it’s an ideal material for the job. It’s hard-wearing, and inert in most respects. It doesn’t interact with the beverages you put in it, and it’s easy to clean. The only problem is that it’s rather easy to break. Despite its major weakness, glass still reigns supreme over plastic and metal alternatives.

But what if you could make glassware that didn’t break? Surely, that would be a supreme product that would quickly take over the entire market. As it turns out, an East German glassworks developed just that. Only, the product didn’t survive, and we lumber on with easily-shattered glasses to this day. This is the story of Superfest.

Continue reading “The “Unbreakable” Beer Glasses Of East Germany”

How To Make Conductive Tin Oxide Coatings On Glass

Glass! It’s, uh, not very conductive. And sometimes we like that! But other times, we want glass to be conductive. In that case, you might want to give the glass a very fine coating of tin oxide. [Vik Olliver] has been working on just that, in hopes he can make a conductive spot on a glass printing bed in order to use it with a conductive probe.

[Vik’s] first attempt involved using tin chloride, produced by dissolving some tin in a beaker of hydrochloric acid. A droplet of this fluid was then dropped on a glass slide that was heated with a blowtorch. The result was a big ugly white splotch. Not at all tidy, but it did create a conductive layer on the glass. Just a thick, messy one. Further attempts refined the methodology, and [Vik] was eventually able to coat a 1″ square with a reasonably clear coating that measured an edge-to-edge resistance around 8 megaohms.

If you’re aware of better, easier, ways to put a conductive coating on glass, share them below! We’ve seen similar DIY attempts at this before, too. If you’ve been cooking up your own interesting home chemistry experiments (safely!?) do let us know!