The Moment A Bullet Turns Into A Flashlight, Caught On Film

[The Slo Mo Guys] caught something fascinating while filming some firearms at 82,000 frames per second: a visible emission of light immediately preceding a bullet impact. The moment it occurs is pictured above, but if you’d like to jump directly to the point in the video where this occurs, it all starts at [8:18].

The ability to capture ultra-slow motion allows us to see things that would otherwise happen far too quickly to perceive, and there are quite a few visual spectacles in the whole video. We’ll talk a bit about what is involved, and what could be happening.

Spotting something unusual on video replay is what exteme slo-mo filming is all about.

First of all, the clear blocks being shot are ballistic gel. These dense blocks are tough, elastic, and a common sight in firearms testing because they reliably and consistently measure things like bullet deformation, fragmentation, and impact. It’s possible to make homemade ballistic gel with sufficient quantities of gelatin and water, but the clear ones like you see here are oil-based, visually clear, and more stable (they do not shrink due to evaporation).

We’ve seen the diesel effect occur in ballistic gelatin, which is most likely the result of the bullet impact vaporizing small amounts of the (oil-based) gel when the channel forms, and that vaporized material ignites due to a sudden increase in pressure as it contracts.

In the video linked above (and embedded below), there is probably a bit more in the mix. The rifles being tested are large-bore rifles, firing big cartridges with a large amount of gunpowder igniting behind each bullet. The burning powder causes a rapid expansion of hot, pressurized gasses that push the bullet down the barrel at tremendous speed. As the bullet exits, so does a jet of hot gasses. Sometimes, the last bits of burning powder are visible as a brief muzzle flash that accompanies the bullet leaving the barrel.

A large projectile traveling at supersonic velocities results in a large channel and expansion when it hits ballistic gel, but when fired at close range there are hot gasses from the muzzle and any remaining burning gunpowder in the mix, as well. All of which help generate the kind of visual spectacles we see here.

We suspect that the single frame of a flashlight-like emission of light as the flat-nosed bullet strikes the face of the gel is also the result of the diesel effect, but it’s an absolutely remarkable visual and a fascinating thing to capture on film. You can watch the whole thing just below the page break.

Continue reading “The Moment A Bullet Turns Into A Flashlight, Caught On Film”

The Dangerously Delightful Homemade Rockets Of Thailand

Every once in a while, we here at Hackaday stumble across something that doesn’t quite fit in with all the other amazing hacks we feature, but still seems like something that our dear readers need to see as soon as possible. This video of homemade rockets in Thailand is one of those things.

It comes to us from our friend [Leo Fernekes], who documents a form of amateur rocketry that makes the Estes rockets of our youth look pretty tame. It’s far easier to watch than it is to describe, but for a quick summary, the rockets are bamboo rings with a steel pipe across the diameter. The pipe is packed with homemade gunpowder and provided with nozzles that create both thrust and rotation. When ignited by torches touched to seriously sketchy primers, the rocket starts to spin up, eventually rising off the launch pad and screwing itself into the sky on a twisting column of gray smoke.

At three or four meters across, these are not small vehicles. Rather than letting a steel pipe plummet back to Earth from what looks like several hundred meters altitude, the rocketeers have devised a clever recovery system that deploys a parachute when the rocket motor finally melts through some plastic straps. The use of banana tree bark as a heat shield to protect the parachute is simple but effective; which is really the way you can describe the whole enterprise. [Leo] has another way to describe it: “Dangerously negligent madness,” with all due respect and affection, of course. It looks like a big deal, too — the air is obviously filled with the spirit of competition, not to mention the rotten-egg stench of gunpowder.

Should you try this at home? Probably not — we can think of dozens of reasons why this is a bad idea. Still, it’s amazing to watch, and seeing how much altitude these cobbled-up rockets manage to gain is truly amazing. Hats off to [Leo] for finding this for us.

Continue reading “The Dangerously Delightful Homemade Rockets Of Thailand”

Building A Hammer Powered By Gunpowder

Hammers are pretty straightforward tools. If you need more impact force, just get a bigger hammer. Alternatively, you can look at enhancing performance with chemical means, and we don’t mean by using steroids. No, instead, you can try hammering with the aid of gunpowder, and [i did a thing] has done just that.

The build relies on using 6.8mm blank cartridges designed for the Ramset brand of explosive nail drivers. However, rather than buying such a tool off the shelf, [i did a thing] built one in a traditional hammer format instead. The device looks like a hammer, with a hinge on the two-piece head, which allows a blank cartridge to be placed inside. When the hammer is swung at a hard surface, the impact triggers the blank which drives the nail forward with incredible force.

[i did a thing] was able to pierce steel with the device, and sent a nail clean through a surfboard, too. It’s a very dangerous thing, so if you’re experimenting in this space, do be careful. Video after the break.

Continue reading “Building A Hammer Powered By Gunpowder”

Auto-Trickler Gently Doles Out Powder To Assist Reloading

Do you even trickle?

[Eric] does, and like everything else about reloading, trickling is serious business. Getting an exact charge of powder to add to a cartridge is not a simple task, and very tedious when done manually. This smartphone-controlled auto-trickler is intended to make the job easier, safer, and more precise.

Reloading ammunition is a great way for shooters to save money and recycle the brass casings that pile up at the end of a long day at the range. It can be a fairly simple process of cleaning the casings, replacing the spent primers, adding the correct powder charge, and seating a new bullet. It’s all pretty straightforward, but the devil is in the details, especially with the powder charge. A little too much can be a big problem, so tricklers were invented to allow the reloader to sneak up on the proper charge. [Eric]’s auto-trickler interfaces to a digital powder scale and uses a standard cell phone vibration motor to gently coax single kernels of powder from a hopper until the proper charge has accumulated. It’s easier to understand by watching the video below.

The hardware behind the trickler is pretty standard — just a Raspberry Pi Zero to talk to the smartphone UI via Bluetooth, and to monitor and control the scale via USB. [Eric] has made all the code open source so that anyone can build their own auto-trickler, which we applaud; he did the same thing with his rifle-mounted accelerometer. This project might have applications far beyond reloading where precision dispensing is required.

Continue reading “Auto-Trickler Gently Doles Out Powder To Assist Reloading”

Gunpowder From Urine, Fighting A Gorn

[Cody] has a nice little ranch in the middle of nowhere, a rifle, and a supply of ammunition. That’s just fine for the zombie apocalypse, but he doesn’t have an infinite supply of ammo. Twenty years after Z-day, he may find himself without any way to defend himself. How to fix that problem? He needs gunpowder. How do you make that? Here’s a plastic jug.

There are three ingredients required to make gunpowder – saltpeter, charcoal, and sulfur. The last two ingredients are easy enough if you have trees and a mine like [Cody], but saltpeter, the a source of nitrates, aren’t really found in nature. You can make nitrates from atmospheric nitrogen if you have enough energy, but [Cody] is going low tech for this experiment. He’s saving up his own urine in a compost pile, also called a niter bed. It’s as simple as putting a few grass clippings and straw on a plastic tarp, peeing on it for a few months, and waiting for nitrogen-fixing to do their thing.

Calcium_nitrate
Calcium Nitrate

[Cody] doesn’t have to wait a year for his compost pile to become saturated with nitrates. He has another compost pile that has been going for about 18 months, and this is good enough for an experiment in extracting calcium nitrate. After soaking and straining this bit of compost, [Cody] is left with a solution of something that has calcium nitrate in it. This is converted to potassium nitrate – or saltpeter – by running it through wood ash. After drying out this mess of liquid, [Cody] is left with something that burns with the addition of a little carbon.

With a source of saltpeter, [Cody] only needs charcoal and sulfur to make gunpowder. Charcoal is easy enough to source, and [Cody] has a mine with lead sulfide. He can’t quite extract sulfur from his ore, so instead he goes with another catalyst – red iron oxide, or rust.

The three ingredients are combined, and [Cody] decides it’s time for a test. He has a homebuilt musket, or a piece of pipe welded at one end with a touch hole, and has a big lead ball. With his homebrew gunpowder, this musket actually works. The lead ball doesn’t fly very far, but it’s enough to put a dent in a zombie or deer; not bad for something made out of compost.

Historically, this is a pretty odd way of making gunpowder. For most of history, people with guns have also had a source of saltpeter. During the Napoleonic Wars, however, France could not import gunpowder or saltpeter and took to collecting urine from soldiers and livestock. This source of nitrates was collected, converted from calcium nitrate to potassium nitrate, and combined with charcoal and sulfur to field armies.

Still, [Cody] has a great example of what can be done using traditional methods, and the fact that he can fire a ball down a barrel is proof enough that the niter bed he’s peeing in will produce even better gunpowder.

Continue reading “Gunpowder From Urine, Fighting A Gorn”

Fuse Making Machine

This is a fuse making machine that operates nearly as well as a factory machine would. Have you figured out what exactly this is yet? It’s not an electrical fuse, it’s a Visco Fuse. Still not totally clear? Don’t worry, we had to look it up too. Visco Fuse is a high-quality safety fuse used in fireworks.

[Robert McMullen] built the machine as part of his degree in Mechanical Engineering at Olin College. But there’s a hobby twist behind its genesis. When he has free time he participates in Olin’s Fire Arts Club and we’re sure this stuff comes in handy. The fuse is made by encapsulating a stream of gunpowder in a tube of woven thread. Twenty spools of thread wrap their way around the nozzle of a fine funnel. Once the casing is in place the machine coats it in a waterproof lacquer.

The image above only shows the base of the machine. All the fun parts (and test burns including one underwater) can be seen in the video after the break. Continue reading “Fuse Making Machine”