Open Source DMR Radio

While ham radio operators have been embracing digital mobile radio (DMR), the equipment is most often bought since — at least in early incarnations — it needs a proprietary CODEC to convert speech to digital and vice versa. But [QRadioLink] decided to tackle a homebrew and open source DMR modem.

The setup uses a LimeSDR, GNU Radio, and Codec2. There are some other open DMR projects, such as OpenRTX. So we are hopeful there are going to be more choices. The DMR modem, however, is only a proof-of-concept and reuses the MMDVMHost code to do the data link layer.

[QRadioLink] found several receiver implementations available, but only one other DMR transmitter — actually, a transceiver. Rather than use an AMBE hardware device or the potentially encumbered mbelib codec, the project uses Codec2 which is entirely open source.

There’s a lot of explanation about the data collection to prepare for the project, and then a deep dive into the nuts and bolts of the implementation. You might enjoy the video below to see things in action.

If you just want to listen to DMR, it’s easy. If Codec2 sounds familiar, it is part of M17.

Continue reading “Open Source DMR Radio”

AMSAT-OSCAR 7: The Ham Satellite That Refused To Die

When the AMSAT-OSCAR 7 (AO-7) amateur radio satellite was launched in 1974, its expected lifespan was about five years. The plucky little satellite made it to 1981 when a battery failure caused it to be written off as dead. Then, in 2002 it came back to life. The prevailing theory being that one of the cells in the satellites NiCd battery pack, in an extremely rare event, failed open — thus allowing the satellite to run (intermittently) off its solar panels.

In a recent video by [Ben] on the AE4JC Amateur Radio YouTube channel goes over the construction of AO-7, its operation, death and subsequent revival are covered, as well as a recent QSO (direct contact).

The battery is made up of multiple individual cells.

The solar panels covering this satellite provided a grand total of 14 watts at maximum illumination, which later dropped to 10 watts, making for a pretty small power budget. The entire satellite was assembled in a ‘clean room’ consisting of a sectioned off part of a basement, with components produced by enthusiasts associated with AMSAT around the world. Onboard are two radio transponders: Mode A at 2 meters and Mode B at 10 meters, as well as four beacons, three of which are active due to an international treaty affecting the 13 cm beacon.

Positioned in a geocentric LEO (1,447 – 1,465 km) orbit, it’s quite amazing that after 50 years it’s still mostly operational. Most of this is due to how the satellite smartly uses the Earth’s magnetic field for alignment with magnets as well as the impact of photons to maintain its spin. This passive control combined with the relatively high altitude should allow AO-7 to function pretty much indefinitely while the PV panels keep producing enough power. All because a NiCd battery failed in a very unusual way.

Continue reading “AMSAT-OSCAR 7: The Ham Satellite That Refused To Die”

What’s Wrong With This Antenna Tuner?

[Tech Minds] built one of those cheap automatic antenna tuners you see everywhere — this one scaled up to 350 watt capability. The kit is mostly built, but you do have to add the connectors and a few other stray bits. You can see how he did it in the video below.

What was very interesting, however, was that it wasn’t able to do a very good job tuning a wire antenna across the ham bands, and he asks for your help on what he should try to make things better.

Continue reading “What’s Wrong With This Antenna Tuner?”

A Ten Band SDR Transceiver For Homebrewers

Making a multi-band amateur radio transceiver has always been a somewhat challenging project, and making one that also supported different modes would for many years have been of almost impossible complexity best reserved for expensive commercial projects. [Bob W7PUA] has tackled both in the form of a portable 10-band multi-mode unit, and we can honestly say he’s done a very good job indeed.

As you might expect in 2025 it’s a software defined radio (SDR), but to show how powerful the silicon available today is, it’s all implemented on a microcontroller. There’s a Teensy 4 with an audio codec board that does all the signal processing heavy lifting, and an RF board that takes care of the I/Q mixing and the analogue stuff.

Band switching is handled using a technique from the past; interchangeable plug-in coil and filter units, that do an effective job. The result is a modestly-powered but extremely portable rig that doesn’t look to have broken the bank, and since the write-up goes into detail on the software side we hope it might inform other SDR projects too. We might have gone for old-school embossed Dymo labels on that brushed aluminium case just for retro appeal, but we can’t fault it.

It’s not the first time we’ve looked at a small multi-band SDR here, but we think this one ups the game somewhat.

Thanks [Pete] for the tip!

Retrotectacular: Ham Radio As It Was

We hear a lot about how ham radio isn’t what it used to be. But what was it like? Well, the ARRL’s film “The Ham’s Wide World” shows a snapshot of the radio hobby in the 1960s, which you can watch below. The narrator is no other than the famous ham [Arthur Godfrey] and also features fellow ham and U.S. Senator [Barry Goldwater]. But the real stars of the show are all the vintage gear: Heathkit, Swan, and a very oddly placed Drake.

The story starts with a QSO between a Mexican grocer and a U.S. teenager. But it quickly turns to a Field Day event. Since the film is from the ARRL, the terminology and explanations make sense. You’ll hear real Morse code and accurate ham lingo.

Continue reading “Retrotectacular: Ham Radio As It Was”

Communicating With Satellites Like It’s 1957

When the first artificial satellite, Sputnik, was put into orbit around Earth, anyone in the path of the satellite could receive the beeps transmitted by the satellite provided they had some simple radio equipment. Of course, there was no two-way communication with this satellite, and it only lasted a few weeks before its batteries died. Here in the future, though, there are many more satellites in orbit and a few are specifically meant for ham radio operators. And, like the ’50s, it doesn’t take too much specialized equipment to communicate with them, although now that communication can be two-way.

The first step in this guide by [W2PAK] is to know where these satellites are in the sky. The simplest way to do that is to use a smartphone app called GoSatWatch and, when configured for a specific location, shows the satellites currently overhead. After that it’s time to break out the radio gear, which can be surprisingly inexpensive. A dual-band handheld is required since satellite uplink and downlink can be on different bands, and the antenna can be made from simple parts as well as [W2PAK] demonstrates in a separate video. Combined, this can easily be done for less than $100. [W2PAK] also goes over the proper format and etiquette for a satellite contact as well, so a new operator can pick it up quickly.

Using satellites as repeaters opens up a lot of capabilities when compared to terrestrial communications. Especially for operators with entry-level licenses who are restricted to mostly VHF and UHF, it adds a challenge as well as significantly increased range compared to ground-based repeaters and line-of-sight communications. There are plenty of activities around satellites that don’t require a license at all, too, like this project which downloads weather imagery from weather satellites.

Continue reading “Communicating With Satellites Like It’s 1957”

Bouncing Signals Off Of Satellites Other Than The Moon

The moon is a popular target for ham radio operators to bounce signals since it’s fairly large and follows a predictable path. There are some downsides, though; it’s not always visible from the same point on Earth and is a relatively long way away. Thinking they could trade some distance for size, an amateur radio group from the Netherlands was recently able to use a radio telescope pointed at a geostationary satellite to reflect a signal back down to Earth, using this man-made satellite to complete the path instead of the more common natural one.

While there are plenty of satellites in orbit meant for amateur radio communication (including the International Space Station, although it occasionally does other things too), these all have built-in radio transmitters or repeaters specifically meant for re-transmitting received signals. They’re also generally not in geostationary orbit. So, with a retired radio telescope with a 20-meter dish aimed directly at one of the ones already there, they sent out a signal which bounced off of the physical body of the satellite and then back down where it was received by a station in Switzerland. Of course, the path loss here is fairly extreme as well since the satellite is small compared to the moon and geostationary orbit is a significant distance away, so they used the Q65 mode in WSJT-X which is specifically designed for recovering weak signals.

Don’t break out the tape measure Yagi antenna to try this yourself just yet, though. This path is not quite as reliable as Earth-Moon-Earth for a few reasons the group is not quite sure about yet. Not every satellite they aimed their dish at worked, although they theorize that this might be because of different shapes and sizes of the satellites or that the solar panels were not pointing the correct direction. But they were able to make a few contacts using this method nonetheless, a remarkable achievement they can add to their list which includes receiving a signal from one of the Voyager spacecraft.