CNC Router Skateboard

Self Replicating Skateboard…. What?!?!?

[Bart] and company over at Pumping Station One make a lot of skateboard decks. They wanted to build a CNC Router that was not only portable but had a size that was optimized for cutting skateboard decks. The project got a little out of hand and the CNC Router ended up also being a skateboard! As crazy as that sounds, the craziest part may be that they built it in just one night.

CNC Router SkateboardThe project started off with some stock Shapeoko 2 parts. Achieving the deck-cutting size required shortening the X Axis and tripling the length of the Y Axis resulting in a 250 x 1200mm work envelope. The DC spindle used accepts ER16 collets and has a fully variable speed control. The stand alone selectable 24/48 volt power supply has a neat DIY handle to ease transportation. Even though the router itself has skateboard trucks, it also has a handle at the front so it’s easy to grab and drag behind you.

The guys that built this admit that, as a skateboard, it is kind of crappy. They do go on to mention that a 230lb dude was able to ride it without incident. As a project, however, they hit their goals on the head, ending up with an easily-transportable dedicated skateboard-deck-making CNC Router.

Electric Bubblegum Boards

Electric Bubblegum Board

The Mini Maker Faire in Atlanta was packed with exciting builds and devices, but [Andrew’s] Electric Bubblegum Boards stood out from the rest, winning the Editor’s Choice Award. His boards first emerged on Endless Sphere earlier this summer, with the goal of hitting all the usual e-skateboard offerings of speed, range, and weight while dramatically cutting the cost of materials.

At just over 12 pounds, the boards are lightweight and fairly compact, but have enough LiFePO4’s fitted to the bottom to carry a rider 10 miles on a single charge. A Wii Nunchuck controls throttle, cruise control, and a “boost” setting for bursts of speed. The best feature of this e-skateboard, however, is the use of 3D-printed parts. The ABS components not only help facilitate the prototyping process, but also permit a range of customization options. Riders can reprint parts as necessary, or if they want to just change things up.

[Andrew’s] board is nearing the 11th hour over at his Kickstarter page, so swing by to see a production video made for potential backers, or stick around after the break for some quick progress and demo videos.

Continue reading “Electric Bubblegum Board”

Electric Longboard Roundup

ev longboards everywhere!

Everybody and their grandmother is longboarding electric-style these days: here are some of the most recent developments in the world of kickless cruising.

First up, [comsa42] has punched up an excellent step-by-step visual guide for first-time EV hopefuls, detailing the basics of a battery-powered longboard setup and thoroughly explaining the particulars behind component choices. His build is relatively straightforward: combine a board with a low(ish) kV outrunner motor, some LiPo batteries, an ESC (Electronic Speed Controller), a transmitter/receiver, and a few custom parts for gearing and mounting. This build should be commended not only for its simplicity but also for its frugality: [comsa42] estimates a final cost of around only $300, which is a staggering difference from commercial alternatives such as the Boosted Board and newcomer Marbel.

[comsa42’s] other significant contribution is a low-key and low-cost cover to house the electronics. He simply fiberglassed a small enclosure to protect the expensive internals, then mounted and painted it to blend seamlessly with the rest of the deck. You can find loads of other useful goodies in his guide, including CAD files for the motor mounts and for the wheel assembly.

But wait, there’s more! Stick around after the jump for a few other builds that ditch traditional wheels in favor of a smoother alternative. There’s also a smattering of videos, including comsa42’s] guide overview and some excellent cruising footage of the other board builds doing what they do best.

Continue reading “Electric Longboard Roundup”

Beamboarder Lets You Skate At Night; Won’t Blind Oncoming Traffic

beam-boarder-night-skating

Whether you use your longboard as transportation or pleasure riding, night-time sessions can be harrowing if you’re screaming through poorly-lit places. The Beamboarder is a solution that is simple to build and easy to throw in a backpack whenever that giant ball of fire is above the horizon.

Boiled down it’s a high-power LED and a Lithium battery. How’s that for a hack? Actually it’s the “garbage” feel of it ([Lyon’s] words, not ours) that makes us smile. An old hard drive with as high of a capacity as possible was raided for parts. That sounded like a joke at first but the point is that early, large drives have bigger magnets inside. You need a really strong one because that’s all that will hold the LED to the front truck of our board. From there it’s a matter of attaching a CREE LED with thermal adhesive and wiring it up to the Lithium pack that has been covered in shrink tube to keep the elements out.

The headlight is under the board, which is courteous to oncoming traffic. Once you pull off this hack we’re sure you’ll want to go further so we suggest wheels with LED POV displays and there’s always the option of going full electric.

Motorized Longboard

image

What were you building in your junior year of highschool? Well, for [Aaron Cofield], he built a motorized longboard.

He started with a plain longboard in the design he liked, gave it a nice paint coat (aesthetics over functionality people!) and then started looking into motorizing it. As it turns out there’s actually a pretty handy blog dedicated to converting longboards to electric. After many hours of research he settled on a 2400W RC prop motor and a 150A high performance RC car ESC unit. Who knew it was that simple!

A few metal brackets, some belts, sprockets, an idler and a whole ton of lithium-ion batteries later and the build is complete! He’s currently controlling it with an RC car remote, but had plans to control it using a Wii nunchuck and Arduino. The test runs this past summer got the board going about 20mph!

It looks done for now, but we’re sure he’s going to be continuing to refine it next summer — stick around after the break to see one of its first test drives!

Continue reading “Motorized Longboard”

A Longboard Speed And Distance Computer

longboard-speed-distance-comptuer

Why should cyclists have all of the fancy toys? Bicycle computers are very common these days but you won’t find similar hardware for skateboards and longboards. [KobraX22] isn’t taking it lying down. He built this speed and distance computer for his longboard. It doesn’t use very many components and should be easy to install.

The device monitors the rotation of one of the wheels by mounting a reflectance sensor on one of the trucks. It points toward the inside of a wheel which has a piece of black tape on it. Every time the tape passes it prevents the IR led from reflecting back at its paired receiver. This lets the Arduino count the revolutions, which are then paired with the wheel diameter to calculate speed as well as distance traveled. Of course the wheels wear down over time to so frequent riders will have to take new measurements at regular intervals.

[KobraX22] went with a QRB1114 sensor. It costs less than $2 and doesn’t require him to embed a magnet in the wheel like a hall effect sensor setup would have. It also shouldn’t interfere with any other fancy wheel hacks you’ve done, like adding a POV display.

[via Reddit]

POV Wheels For A Longboard

If you don’t mind working with really small components this POV wheel project for a longboard will certainly attract some attention.

The name of the game here is small and cheap. Small because the wheels are only 72mm in diameter (about 2.8 inches). Cheap because [Ch00f] wants to produce and sell them locally. He went with an ATtiny24 microcontroller driving fifteen LEDs. Obviously this will present a problem as the uC uses a 14-pin SOIC package and that’s just not enough I/O to drive the LEDs individually. Add to that the issue of storing patterns to be displayed and you start to run out of program memory very quickly.

But obvious he pulled it off. The image above shows the wheel displaying the CT logo (for ch00ftech.com) and there are several other patterns shown off in the clip after the break. The LEDs are multiplexed, but the wheel spins fast enough that this turns out to be okay. The rotation is measured by an IR reflectance sensor aimed at the stationary axle. A CR2032 powers the device, with some counterweights added to keep the wheel balanced.

Our only concern is the fragility of the exposed electronics. But if you hit the right BOM price we guess you can just replace the board as needed.

Continue reading “POV Wheels For A Longboard”