Tiny Little TV Runs On ESP32

Few of us keep big old cathode ray tubes in the house anymore, but we can still appreciate the form factor of the classic TV. Indeed, the Tinytron from [t0mg] is a neat little tchotchke in this vein — a miniature TV that you could just about fit on a keyring.

[t0mg] wanted this project to be quick and easy to put together. It starts with an ESP32-S3-LCD-1.69 from Waveshare. It’s an all-in-one dev module which combines the microcontroller with a small screen right out of the box. You just have to solder a single six pin header to hook it up with an SD card reader and battery, and you’re done with the electronics. Even the case is a cinch to build, with four 3D printed components that can be spat out of a Prusa MK4S in just half an hour. Programming it can be done via a web browser. Just about the only thing it’s missing is a speaker — this TV is video only.

To watch things on the Tinytron, you just have to prepare them properly and drop them on the SD card. [t0mg] provides a web page for transcoding the video files, although you can do it yourself locally with ffmpeg if you prefer.

If you’re looking for a silly gift for a TV-obsessed friend, you could probably whip up a Tinytron in a couple hours or less. It reminds us of another great project, the tiny Simpsons replica TV that endlessly plays the greatest cartoon on Earth.

Continue reading “Tiny Little TV Runs On ESP32”

Japan’s Forgotten Analog HDTV Standard Was Well Ahead Of Its Time

When we talk about HDTV, we’re typically talking about any one of a number of standards from when television made the paradigm switch from analog to digital transmission. At the dawn of the new millenium, high-definition TV was a step-change for the medium, perhaps the biggest leap forward since color transmissions began in the middle of the 20th century.

However, a higher-resolution television format did indeed exist well before the TV world went digital. Over in Japan, television engineers had developed an analog HD format that promised quality far beyond regular old NTSC and PAL transmissions. All this, decades before flat screens and digital TV were ever seen in consumer households!

Continue reading “Japan’s Forgotten Analog HDTV Standard Was Well Ahead Of Its Time”

Building Your Own DVB-S2 Receiver

Generally, a digital TV tuner is something you buy rather than something you make yourself. However, [Johann] has always been quite passionate about the various DVB transmission standards, and decided he wanted to build his own receiver just for the fun of it.

[Johann]’s build is designed to tune in DVB-S2 signals transmitted from satellites, and deliver that video content over a USB connection. When beginning his build, he noted it was difficult to find DVB reception modules for sale as off-the-shelf commercial parts. With little to nothing publicly available, he instead purchased a “Formuler F1 Plug & Play DVB-S2 HDTV Sat Tuner” and gutted it for the Cosy TS2M08-HFF11 network interface module (NIM) inside. He then paired this with a Cypress CY7C68013A USB bridge to get the data out to a PC. [Johann] then whipped up a Linux kernel driver to work with the device.

[Johann] doesn’t have hardcore data on how his receiver performs, but he reports that it “works for me.” He uses it in South Germany to tune in the Astra 19.2E signal.

We don’t talk a lot about DVB these days, since so much video content now comes to us over the Internet. However, we have still featured some nifty DVB hacks in the past. If you’re out there tinkering with your own terrestrial or satellite TV hardware, don’t hesitate to notify the tipsline!

Reverse-Engineering Mystery TV Equipment: The Micro-Scan

[VWestlife] ended up with an obscure piece of 80s satellite TV technology, shown above. The Micro-Scan is a fairly plan metal box with a single “Tune” knob on the front. At the back is a power switch and connectors for TV Antenna, TV Set, and “MW” (probably meaning microwave). There’s no other data. What was this, and what was it for?

Satellite TV worked by having a dish receive microwave signals, but televisions could not use those signals directly. A downconverter was needed to turn the signal into something an indoor receiver box (to which the television was attached) could use, allowing the user to select a channel to feed into the TV.

At first, [VWestlife] suspected the Micro-Scan was a form of simple downconverter, but that turned out to not be the case. Testing showed that the box didn’t modify signals at all. Opening it up revealed the Micro-Scan acts as a combination switchbox and variable power supply, sending a regulated 12-16 V (depending on knob position) out the “MW” connector.

So what is it for, and what does that “Tune” knob do? When powered off, the Micro-Scan connected the TV (plugged into the “TV Set” connector) to its normal external antenna (connected to “TV Antenna”) and the TV worked like a normal television. When powered on, the TV would instead be connected to the “MW” connector, probably to a remote downconverter. In addition, the Micro-Scan supplied a voltage (the 12-16 V) on that connector, which was probably a control voltage responsible for tuning the downconverter. The resulting signal was passed unmodified to the TV.

It can be a challenge to investigate vintage equipment modern TV no longer needs, especially hardware that doesn’t fit the usual way things were done, and lacks documentation. If you’d like to see a walkthrough and some hands-on with the Micro-Scan, check out the video (embedded bel0w).

Continue reading “Reverse-Engineering Mystery TV Equipment: The Micro-Scan”

Checking Out A TV Pattern Generator From 1981

The picture on a TV set used to be the combined product of multiple analog systems, and since TVs had no internal diagnostics, the only way to know things were adjusted properly was to see for yourself. While many people were more or less satisfied if their TV picture was reasonably recognizable and clear, meaningful diagnostic work or calibration required specialized tools. [Thomas Scherrer] provides a close look at one such tool, the Philips PM 5519 GX Color TV Pattern Generator from 1981.

This Casio handheld TV even picked up the test pattern once the cable was disconnected, the pattern generator acting like a miniature TV station.

The Philips PM 5519 was a serious piece of professional equipment for its time, and [Thomas] walks through how the unit works and even opens it up for a peek inside, before hooking it up to both an oscilloscope and a TV in order to demonstrate the different functions.

Tools like this were important because they could provide known-good test patterns that were useful not just for troubleshooting and repair, but also for tasks like fine-tuning TV settings, or verifying the quality of broadcast signals. Because TVs were complex analog systems, these different test patterns would help troubleshoot and isolate problems by revealing what a TV did (and didn’t) have trouble reproducing.

As mentioned, televisions at the time had no self-diagnostics nor any means of producing test patterns of their own, so a way to produce known-good reference patterns was deeply important.

TV stations used to broadcast test patterns after the day’s programming was at an end, and some dedicated folks have even reproduced the hardware that generated these patterns from scratch.

Continue reading “Checking Out A TV Pattern Generator From 1981”

A TV With Contrast You Haven’t Seen For Years

It’s something of a surprise, should you own a CRT TV to go with your retrocomputers, when you use it to view a film or a TV show. The resolution may be old-fashioned, but the colors jump out at you, in a way you’d forgotten CRTs could do. You’re seeing black levels that LCD screens can’t match, and which you’ll only find comparable on a modern OLED TVs. Can an LCD screen achieve decent black levels? [DIY Perks] is here with a modified screen that does just that.

LCD screens work by placing a set of electronic polarizing filters in front of a bright light. Bright pixels let through the light, while black pixels, well, they do their best, but a bit of light gets through. As a result, they have washed-out blacks, and their images aren’t as crisp and high contrast as they should be. More modern LCDs use an array of LEDs as the backlight which they illuminate as a low resolution version of the image, an approach which improves matters but leaves a “halo” round bright spots.

The TV in the video below the break is an older LCD set, from which he removes the backlight and places the electronics in a stand. He can show an image on it by placing a lamp behind it, but he does something much cleverer. An old DLP projector with its color wheel removed projects a high-res luminance map onto the back of the screen, resulting in the coveted high contrast image. The final result uses a somewhat unwieldy mirror arrangement to shorten the distance for the projector, but we love this hack. It’s not the first backlight hack we’ve seen, but perhaps it give the best result.

Continue reading “A TV With Contrast You Haven’t Seen For Years”

Is This The Oldest HD Video Online?

Take a look at this video from [Reely Interesting], showing scenes from traditional Japanese festivals. It’s well filmed, and as with any HD video, you can see real detail. But as you watch, you may see something a little out of the ordinary. It’s got noise, a little bit of distortion, and looking closely at the surroundings, it’s clearly from the 1980s. Something doesn’t add up, as surely we’d expect a video like this to be shot in glorious 525 line NTSC. In fact, what we’re seeing is a very rare demo reel from 1985, and it’s showing off the first commercial HDTV system. This is analogue video in 1035i, and its background as listed below the video makes for a very interesting story.

Most of us think of HDTV arriving some time in the 2000s when Blu-ray and digital broadcasting supplanted the NTSC or PAL systems. But in fact the Japanese companies had been experimenting since the 1960s, and these recordings are their first fruits. It’s been digitized from a very rare still-working Sony HDV-1000 reel-to-reel video recorder, and is thus possibly the oldest HD video viewable online. They’re looking for any HDV-1000 parts, should you happen to have one lying around. Meanwhile, the tape represents a fascinating window into a broadcast history very few of us had a chance to see back in the day.

This isn’t the first time we’ve touched on vintage reel-to-reel video.

Continue reading “Is This The Oldest HD Video Online?”