Turn Your $10 Dollar Mouse Into A Fancy $10 Dollar Mouse With CNC

We feel it’s healthy to cultivate a general desire for more neat tools. That’s just one of the reasons we like [doublecloverleaf]’s retro PC mouse. It certainly meets the requirement, the first computer mouse was wooden, and the mouse he used as the guts for this is so retro it belongs in the dollar bin at the thrift store.

To begin with, [doublecloverleaf] took a picture of the footprint of his aged, but trustworthy laser mouse. Using the photo in SolidWorks he built a model of the circuit board, and with that digitized, a mouse that suited his aesthetics around it. The final model is available on GrabCAD.

Edit: Woops, looks like we accidentally slandered a great Slovenian community CNC project. Check out the comments for more info. Original text in italics. 

Next came the CNC. It looks like he’s using one of those Chinese 3040 mills that are popular right now. The electronics are no good, but if you luck out you can get a decent set of mechanics out of one. He did a two side milling operation on a wood block, using four small holes to align the gcode before each step, and then milled the bottom out of aluminum. Lastly, he milled the buttons out of aluminum as well, and turned a knurled scroll wheel on his lathe.
The end result looks exceedingly high end, and it would be a hard first guess to assume the internals were equivalent to a $10 Amazon house brand mouse.

Continue reading “Turn Your $10 Dollar Mouse Into A Fancy $10 Dollar Mouse With CNC”

A Better Expanding Table

About a year ago, [Scott] completed what is probably one of the finest builds ever shown on a YouTube channel. It was an expanding wooden table, a build inspired by a fantastically expensive expanding table that was itself inspired by a creation by a mad woodworker in the early 1800s. Although [Scott]’s table is a very well-engineered build, there were a few things he wasn’t happy with. Over the past few months he’s been refining the design and has come up with the final iteration – and plans – for a wooden mechanical expanding table.

Late last year, [Scott] had about 450 hours of design and build time in his table, and by the time he got to the proof of concept stage, he simply ran out of steam. Another year brings renewed enthusiasm, and over the past month or so he’s been working on much-needed improvements to his expanding table that included a skirt for the side of the table, and improvements to the mechanics.

The expanding table is rather thick with three layers of tabletop stacked on top of each other, and those exposed mechanical linkages should be hidden. This means a skirt, and that requires a huge wooden ring. [Scott] built a ring 5 1/2″ deep, about an inch and a half thick, and has the same diameter of the table itself. This means cutting up a lot of plywood, and stacking, gluing, sanding, and routing the entire thing into a perfectly round shape.

The other upgrades were really about the fit and finish of the internal mechanics of the table. Screws were changed out, additional brackets were crafted, and the mounts for the internal ‘star’ was upgraded.

After all that work, is the table done? No, not quite; the skirt could use a veneer, proper legs need to be built, and the entire thing could use a finish. Still, this is the most complete homebuilt expanding table ever conceived, and [Scott] has the plans for his table available for anyone who would want to replicate his work.

Continue reading “A Better Expanding Table”

Clamps, Cauls, And The Mother Of Invention

If there’s one thing you need in a woodshop, it’s more clamps. There are bar clamps, pipe clamps, spring clamps, and trigger clamps, but for one task in the workshop, no clamp does the job just right. Gluing up panels – a few wide pieces of wood joined on edge – either requires more clamps than you have or cauls, devices that press down on the boards vertically while the clamps press the board together horizontally.

[Andrew Klein] has just invented a new type of clamp for this task, proving once again that not all problems are solved, and there’s still some places where an invention can pop out of mid-air.

The new clamps are a modification to traditional bar clamps that allow for two clamps to interlock. On each of the ‘working’ ends of the clamps, there are two adjustment handles. The first screws the clamp horizontally, just like any bar or pipe clamp. The second adjustment handle moves a bearing up and down. When this bearing meshes with a riser on the mating end of another clamp, the two clamps are pressed together vertically.

The new clamps are effectively clamps and cauls, able to push material together from side to side and top to bottom. The new clamps work, too. In the video below, you can see [Andrew] gluing up a panel. When the vertical adjustment wheel is loosened, the boards come apart vertically. When the vertical adjustment wheel is tightened, the boards are perfectly in line with each other, both edge to edge and face to face.

Continue reading “Clamps, Cauls, And The Mother Of Invention”

Wooden Escalator Fit For A Slinky

Our favorite mechanical master of woodworking, [Matthias Wandel], is at it again, this time making an endless staircase for a Slinky. Making an escalator out of 2×4’s and other lumber bits looks fairly easy when condensed down to a two and a half minute video. In reality a job like this requires lots of cuts, holes, and a ton of planning.

The hard part of this build seemed to be the motor arrangement. There is a sweet spot when it comes to Slinky escalator speeds. Too fast, and you’ll outpace the Slinky. Too slow, and the Slinky flies off the end of the escalator. Keeping the speed in check turned out to be a difficult task with the coarse speed control of a drill trigger. The solution was to ditch the drill and build a simple hand crank mechanism. The Slinky now can cascade down stairs as long as your arm holds out.

Join us after the break for 3 videos, the making of the escalator, a 140 step demonstration video, and a followup video (for geeks like us) explaining where the idea came from, whats wrong with the machine and possible improvements.

Thanks to [Jim Lynch] for the tip

Continue reading “Wooden Escalator Fit For A Slinky”

Building A Dead-On-Accurate Model Ford Pickup From Scratch

In a world filled with 3D printed this and CNC machined that, it’s always nice to see someone who still does things the old-fashioned way. [Headquake137] built a radio controlled truck body (YouTube link) from wood and polystyrene using just a saw, a Dremel, a hobby knife, and a lot of patience. This is one of those builds that blurs the lines between scale model and sculpture. There aren’t too many pickup trucks one might call “iconic” but if we were to compile a list, the 6th generation Ford F-series would be on it. [Headquake137’s] model is based on a 1977 F100.

ford-thumb2The build starts with the slab sides of the truck. The basic outline is cut into a piece of lumber which is then split with a handsaw to create a left and a right side. From there, [Headquake137’s] uses a Dremel to carve away anything that doesn’t look like a 1977 F100. He adds pieces of wood for the roof, hood, tailgate, and the rest of the major body panels. Small details like the grille and instrument panel are created with white polystyrene sheet, an easy to cut material often used by train and car modelers.

When the paint starts going on, the model really comes to life. [Headquake137] weathers the model to look like it’s seen a long life on the farm. The final part of the video covers the test drive of the truck, now mounted to a custom chassis. The chassis is designed for trails and rock crawling, so it’s no speed demon, but it sure does look the part riding trails out in the woods!

[Headquake137] managed to condense what must have been a 60 or 70 hour build down to a 14 minute video found below.

Continue reading “Building A Dead-On-Accurate Model Ford Pickup From Scratch”

glue rep strap

Wood & Glue RepStrap Works Surprisingly Well

Even with the cost of 3D Printers continually falling, entering the hobby still requires a significant investment. [Skeat] had some typical 3D Printer components available but didn’t have access to a printer for making the ever-so-common frame parts of typical RepRap designs.

glue rep strap [Skeat’s] plan was to cobble together a printer just good enough to print out parts for another, more robust one. The frame is made from wood, a very inexpensive and available material. The frame is not screwed together and doesn’t have any alignment tabs, it’s just hand cut pieces glued together. Each portion of the frame is laid out, aligned with a carpenter’s square and then glued together. This design and assembly method was intentional as [Skeat] didn’t have access to any precision tools. He stated that the only parts of the frame that had to be somewhat precise were the motor mount holes. The assembly process is well documented to aid anyone else looking to make something similar.

In addition to the wooden frame, all of the components are glued in place. That includes the bearings, rods, limit switches and even the Z axis motor! After seeing the photos of this printer, it would be easy to dismiss it as a poor performer. The below video shows that this printer’s print quality can keep up with any hobby level machine available. We wonder if [Skeat] is rethinking making another since this one works so well.

Continue reading “Wood & Glue RepStrap Works Surprisingly Well”

DIY Drill Powered Band Saw

Hand Drill To Band Saw Conversion

Need a band saw but only have a drill kicking around? That may not be a common problem but if you ever run into it, [Izzy] has got you covered. He’s on a mission to make a drill-powered workshop and in his YouTube video, he shows a small bench top band saw he made that is powered by a corded hand drill.

The main frame is made from doubled up 3/4″ plywood. The saw blade is strung between two wooden wheels. Those wheels have tape applied to their outer diameter to create a crowned roller. That crown keeps the saw blade tracking in the middle of the wheel. The bottom wheel is mounted to an axle that is supported by bearings in the main frame. That axle pokes out the back and is connected to the drill. The top wheel has integrated bearings and ride on a stud mounted to the frame. The blade seems to be pretty tight although there is no noticeable tensioning system.

The video shows that this DIY band saw can cut through 1.5 inch wood fairly easily. Even so, there are clearly some needed features, like guide bearings for the blade and an overall cover to prevent accidental lacerations. But we suppose, even professional saws can be dangerous if not treated with respect.