Share Your Projects: Imperfectionism

Everyone has a standard for publishing projects, and they can get pretty controversial. We see a lot of people complain about hacks embedded in YouTube videos, social media threads, Discord servers, Facebook posts, IRC channels, different degrees of open-sourcing, licenses, searchability, and monetization. I personally have my own share of frustrations with a number of these factors.

It’s common to believe that hacking as a culture doesn’t thrive until a certain set of conditions is met, and everyone has their own set of conditions in mind. My own dealbreaker, as you might’ve seen, is open-sourcing of code and hardware alike – I think that’s a sufficiently large barrier for hacking being repeatable, and repeatability is a big part of how hacking culture spreads.

This kind of belief is often self-limiting. Many people believe that their code or PCB source file is not a good contribution to hacking culture unless it meets a certain cleanliness or completeness standard. This is understandable, and I do that, too.

Today, I’d like to argue against my own view, and show how imperfect publishing helps build hacking culture despite its imperfections. Let’s talk about open-source in context of 3D printing.

Continue reading “Share Your Projects: Imperfectionism”

Making YouTube Work In The Netscape 4.5 Browser On Windows 98

The World Wide Web of the 90s was a magical place, where you couldn’t click two links without getting bombarded with phrases such as the Information Super Highway and Multimedia Experience. Of course, the multimedia experience you got on your Windows 9x PC was mostly limited to low-res, stuttery RealMedia and Windows video format clips, but what if you could experience YouTube back then, on your ‘multimedia-ready’ Celeron PC, running Netscape 4.5?

Cue the [Throaty Mumbo] bloke over on that very same YouTube, and his quest to make this dream come true. Although somewhat ridiculous on the face of it, the biggest problem is actually the era-appropriate hardware, as it was never meant to decode and display full-HD VP9-encoded videos.

Because the HTTPS requirement has meant that no 1990s or early 2000s browser will ever browse the modern WWW, a proxy was going to be needed no matter what. This Python-based proxy then got kitted out with not just the means to render down the convoluted HTML-CSS-JS mess of a YouTube page into something that a civilized browser can display, but also to fetch YouTube videos with yt-dlp and transcode it into MPEG1 in glorious SD quality for streaming to Netscape on the Windows 98 PC.

Because the same civilized browsers also support plugins, such as Netscape’s NPAPI, this meant that decoding and rendering the video was the easy part, as the browser just had to load the plugin and the latter doing all the heavy lifting. Perhaps unsurprisingly, with some tweaks even Netscape 2.0 can be used to browse YouTube and play back videos this way, with fullscreen playback and seeking support.

Although these days only a rare few modern browsers like Pale Moon still support NPAPI, it’s easy to see how the introduction of browser plugins boosted the multimedia future of the WWW that we find ourselves in today.

Continue reading “Making YouTube Work In The Netscape 4.5 Browser On Windows 98”

Exploding The Mystical Craftsman Myth

As a Hackaday writer, I see a lot of web pages, social media posts, videos, and other tips as part of my feed. The  best ones I try to bring you here, assuming of course that one of my ever-vigilant colleagues hasn’t beaten me to it. Along the way I see the tropes of changing content creator fashion; those ridiculous pea-sized hand held microphones, or how all of a sudden everything has to be found in the woods. Some of them make me laugh, but there’s one I see a lot which has made me increasingly annoyed over the years. I’m talking of course about the craftsman myth.

No. The Last True Nuts And Bolts Are Not Being Made In Japan

If you don’t recognise the craftsman myth immediately, I’m sure you’ll be familiar with it even if you don’t realise it yet. It goes something like this: somewhere in Japan (or somewhere else perceived as old-timey in online audience terms like Appalachia, but it’s usually Japan), there’s a bloke in a tin shed who makes nuts and bolts.

But he’s not just any bloke in a tin shed who makes nuts and bolts, he’s a special master craftsman who makes nuts and bolts like no other. He’s about 120 years old and the last of a long line of nut and bolt makers entrusted with the secrets of nut and bolt making, father to son, since the 8th century. His tools are also mystical, passed down through the generations since they were forged by other mystical craftsmen centuries ago, and his forge is like no other, its hand-cranked bellows bring to life a fire using only the finest cedar driftwood charcoal. The charcoal is also made by a 120 year old master charcoal maker Japanese bloke whose line stretches back to the n’th century, yadda yadda. And when Takahashi-san finally shuffles off this mortal coil, that’s it for nuts and bolts, because the other nuts and bolts simply can’t compare to these special ones. Continue reading “Exploding The Mystical Craftsman Myth”

Can Digital Poison Corrupt The Algorithm?

These days, so much of what we see online is delivered by social media algorithms. The operations of these algorithms are opaque to us; commentators forever speculate as to whether they just show us what they think we want to see, or whether they try to guide our thinking and habits in a given direction. The Digital Poison device  from [Lucretia], [Auxence] and [Ramon] aims to twist and bend the algorithm to other ends.

The concept is simple enough. The device consists of a Raspberry Pi 5 operating on a Wi-Fi network. The Pi is set up with scripts to endlessly play one or more select YouTube videos on a loop. The videos aren’t to be watched by anyone; the device merely streams them to rack up play counts and send data to YouTube’s recommendation algorithm. The idea is that as the device plays certain videos, it will skew what YouTube recommends to users sharing the same WiFi network based on perceived viewer behavior.

To achieve subtle influence, the device is built inside an unobtrusive container. The idea being that it could be quietly connected to a given WiFi network to stream endlessly, in turn subtly influencing the view habits of other users on the same network.

It’s difficult to say how well this concept would work in practice. In many cases, sites like YouTube have robust user tracking that feeds into recommendation algorithms. Activity from a random user signed into the same network might not have much of an influence. However, conceptually, it’s quite interesting, and the developers have investigated ways to log the devices operation and compare it to recommendations fed to users on the network. Privacy provisions make this difficult, but it may be possible to pursue further research in this area. Files are on Github for the curious.

Ultimately, algorithms will always be a controversial thing as long as the public can’t see how they work or what they do. If you’re working on any projects of your own in this space, don’t hesitate to let us know!

[Thanks to Asher for the tip!]

Preventing AI Plagiarism With .ASS Subtitling

Around two years ago, the world was inundated with news about how generative AI or large language models would revolutionize the world. At the time it was easy to get caught up in the hype, but in the intervening months these tools have done little in the way of productive work outside of a few edge cases, and mostly serve to burn tons of cash while turning the Internet into even more of a desolate wasteland than it was before. They do this largely by regurgitating human creations like text, audio, and video into inferior simulacrums and, if you still want to exist on the Internet, there’s basically nothing you can do to prevent this sort of plagiarism. Except feed the AI models garbage data like this YouTuber has started doing.

At least as far as YouTube is concerned, the worst offenders of AI plagiarism work by downloading the video’s subtitles, passing them through some sort of AI model, and then generating another YouTube video based off of the original creator’s work. Most subtitle files are the fairly straightfoward .srt filetype which only allows for timing and text information. But a more obscure subtitle filetype known as Advanced SubStation Alpha, or .ass, allows for all kinds of subtitle customization like orientation, formatting, font types, colors, shadowing, and many others. YouTuber [f4mi] realized that using this subtitle system, extra garbage text could be placed in the subtitle filetype but set out of view of the video itself, either by placing the text outside the viewable area or increasing its transparency. So now when an AI crawler downloads the subtitle file it can’t distinguish real subtitles from the garbage placed into it.

[f4mi] created a few scripts to do this automatically so that it doesn’t have to be done by hand for each one. It also doesn’t impact the actual subtitles on the screen for people who need them for accessibility reasons. It’s a great way to “poison” AI models and make it at least harder for them to rip off the creations of original artists, and [f4mi]’s tests show that it does work. We’ve actually seen a similar method for poisoning data sets used for emails long ago, back when we were all collectively much more concerned about groups like the NSA using automated snooping tools in our emails than we were that machines were going to steal our creative endeavors.

Thanks to [www2] for the tip!

Continue reading “Preventing AI Plagiarism With .ASS Subtitling”

The 1987 Videonics Editing System

Videonics: The Dawn Of Home Video Editing, Revisited

Here’s a slice of history that will make any retro-tech fan grin: before TikTok and iMovie, there was a beast called the Videonics DirectED Plus. This early attempt at democratizing video editing saved enthusiasts from six-figure pro setups—but only barely. Popular Science recently brought this retro marvel back to life in a video made using the very system that inspired it. Picture it: 1987, VHS at its peak, where editing your kid’s jazz recital video required not just love but the patience of a saint, eight VCRs, three Videonics units, two camcorders, and enough remotes to operate a space shuttle.

The Videonics DirectED Plus held promise with a twist. It offered a way to bypass monstrous editing rigs, yet mastering its panel of buttons felt like deciphering hieroglyphs. The ‘Getting Started’ tape was the analog era’s lifeline, often missing and leaving owners hunting through second-hand stores, forgotten basements, and enthusiast forums. Fast forward to today, and recreating this rig isn’t just retro fever—it’s a scavenger hunt.

The 1987 Videonics Editing SystemOnce assembled, the system resembled a spaghetti junction of cables and clunky commands. One wrong button press could erase precious minutes of hard-won footage. Still, the determination of DIY pioneers drove the machine’s success, setting the stage for the plug-and-play ease we now take for granted.

These adventures into retro tech remind us of the grit behind today’s seamless content creation. Curious for more? Watch the full journey by Popular Science here.

Continue reading “Videonics: The Dawn Of Home Video Editing, Revisited”

3D Printer Streaming Solution Unlocks Webcam Features

While 3D printer hardware has come along way in the past decade and a half, the real development has been in the software. Open source slicers are constantly improving, and OctoPrint can turn even the most basic of printers into a network-connected powerhouse. But despite all these improvements, there’s still certain combinations of hardware that require a bit of manual work.

[Reticulated] wanted an easy way to monitor his prints over streaming video, but didn’t have any of the cameras that are supported by OctoPrint. Of course he could just point a cheap network-connected camera at the printer and be done with it, but he was looking for a bit better integration than that. In the process, he demonstrates how to unlock some features hidden in inexpensive webcams.

He set about building something that wouldn’t require buying more equipment or overloading the limited hardware responsible for the actual printing. A few of his existing cameras have RTMP support, which allows a fairly straightforward setup with YouTube Live once Monaserver is set up to handle the RTMP feeds from the cameras and OBS Studio is configured to stream it out to YouTube. Using the OctoPrint API, he was able to pull data such as the current extruder temperature and overlay it on the video.

One of the other interesting parts of this build is that not all of [Reticulated]’s cameras have built-in RTMP support but following this guide he was able to get more of them working with this setup than otherwise would have had this capability by default. Even beyond 3D printing, this is an excellent guide (and tip) for getting a quick live stream going for whatever reason. For anything more mobile than a working 3D printer, though, you might want to look at taking your streaming setup mobile instead.