A Second OctoPrint Plugin Has Been Falsifying Stats

The ongoing story of bogus analytical data being submitted to the public OctoPrint usage statistics has taken a surprising turn with the news that a second plugin was being artificially pushed up the charts. At least this time, the developer of the plugin has admitted to doing the deed personally.

Just to recap, last week OctoPrint creator [Gina Häußge] found that somebody had been generating fictitious OctoPrint usage stats since 2022 in an effort to make the OctoEverywhere plugin appear to be more popular than it actually was. It was a clever attempt, and if it wasn’t for the fact that the fake data was reporting itself to be from a significantly out of date build of OctoPrint, there’s no telling how long it would have continued. When the developers of the plugin were confronted, they claimed it was an overzealous user operating under their own initiative, and denied any knowledge that the stats were being manipulated in their favor.

Presumably it was around this time that Obico creator [Kenneth Jiang] started sweating bullets. It turns out he’d been doing the same thing, for just about as long. When [Gina] contacted him about the suspicious data she was seeing regarding his plugin, he owned up to falsifying the data and published what strikes us as a fairly contrite apology on the Obico blog. While this doesn’t absolve him of making a very poor decision, we respect that he didn’t try to shift the blame elsewhere.

That said, there’s at least one part of his version of events that doesn’t quite pass the sniff test for us. According to [Kenneth], he first wrote the script that generated the fake data back in 2022 because he suspected (correctly, it turns out) that the developers of OctoEverywhere were doing something similar. But after that, he says he didn’t realize the script was still running until [Gina] confronted him about it.

Now admittedly, we’re not professional programmers here at Hackaday. But we’ve written enough code to be suspicious when somebody claims a script they whipped up on a lark was able to run unattended for two years and never once crashed or otherwise bailed out. We won’t even begin to speculate where said script could have been running since 2022 without anyone noticing…

But we won’t dwell on the minutiae here. [Gina] has once again purged the garbage data from the OctoPrint stats, and hopefully things are finally starting to reflect reality. We know she was already angry about the earlier attempts to manipulate the stats, so she’s got to be seething right about now. But as we said before, these unfortunate incidents are ultimately just bumps in the road. We don’t need any stat tracker to know that the community as a whole greatly appreciates the incredible work she’s put into OctoPrint.

Long-Term OctoPrint Stat Manipulation Uncovered

Developing free and open source software can be a thankless experience. Most folks do it because it’s something they’re passionate about, with the only personal benefit being the knowledge that there are individuals out there who found your work useful enough to download and install. So imagine how you’d feel if it turns out somebody was playing around with the figures, and the steady growth in the number of installs you thought your software had turned out to be fake.

That’s what happened just a few days ago to OctoPrint developer [Gina Häußge]. Although there’s no question that her software for remotely controlling and monitoring 3D printers is immensely popular within the community, the fact remains that the numbers she’s been using to help quantify that popularity have been tampered with by an outside party. She’s pissed, and has every right to be.

Continue reading “Long-Term OctoPrint Stat Manipulation Uncovered”

Automating 3D Printer Support Hardware

While 3D printers have evolved over the past two decades from novelties to powerful prototyping tools, the amount of support systems have advanced tremendously as well. From rudimentary software that required extensive manual input and offered limited design capabilities, there’s now user-friendly interfaces with more features than you could shake a stick at. Hardware support has become refined as well with plenty of options including lighting, ventilation, filament recycling, and tool changers. It’s possible to automate some of these subsystems as well like [Caelestis Workshop] has done with this relay control box.

This build specifically focuses on automating or remotely controlling the power, enclosure lighting, and the ventilation system of [Caelestis Workshop]’s 3D printer but was specifically designed to be scalable and support adding other features quickly. A large power supply is housed inside of a 3D printed enclosure along with a Raspberry Pi. The Pi controls four relays which are used to control these various pieces hardware along with the 3D printer. That’s not the only thing the Pi is responsible for, though. It’s also configured to run Octoprint, a piece of open-source software that adds web interfaces for 3D printers and allows their operation to be monitored and controlled remotely too.

With this setup properly configured, [Caelestis Workshop] can access their printer from essentially any PC, monitor their prints, and ensure that ventilation is running. Streamlining the print process is key to reducing the frustration of any 3D printer setup, and this build will go a long way to achieving a more stress-free environment. In case you missed it, we recently hosed a FLOSS Weekly episode talking about Octoprint itself which is worth a listen especially if you haven’t tried this piece of software out yet.

3D Printer Streaming Solution Unlocks Webcam Features

While 3D printer hardware has come along way in the past decade and a half, the real development has been in the software. Open source slicers are constantly improving, and OctoPrint can turn even the most basic of printers into a network-connected powerhouse. But despite all these improvements, there’s still certain combinations of hardware that require a bit of manual work.

[Reticulated] wanted an easy way to monitor his prints over streaming video, but didn’t have any of the cameras that are supported by OctoPrint. Of course he could just point a cheap network-connected camera at the printer and be done with it, but he was looking for a bit better integration than that. In the process, he demonstrates how to unlock some features hidden in inexpensive webcams.

He set about building something that wouldn’t require buying more equipment or overloading the limited hardware responsible for the actual printing. A few of his existing cameras have RTMP support, which allows a fairly straightforward setup with YouTube Live once Monaserver is set up to handle the RTMP feeds from the cameras and OBS Studio is configured to stream it out to YouTube. Using the OctoPrint API, he was able to pull data such as the current extruder temperature and overlay it on the video.

One of the other interesting parts of this build is that not all of [Reticulated]’s cameras have built-in RTMP support but following this guide he was able to get more of them working with this setup than otherwise would have had this capability by default. Even beyond 3D printing, this is an excellent guide (and tip) for getting a quick live stream going for whatever reason. For anything more mobile than a working 3D printer, though, you might want to look at taking your streaming setup mobile instead.

FLOSS Weekly Episode 778: OctoPrint — People Are Amazing At Breaking Things

This week Jonathan Bennett and Katherine Druckman sit down with Gina Häußge to talk OctoPrint! It’s one of our favorite ways to babysit our 3D printers, and the project has come a long way in the last 12 years! It’s a labor of love, primarily led by Gina, who has managed to turn it into a full time job. Listen in to hear that story and more, including how to run an Open Source project without losing your sanity, why plugins are great, and how to avoid adding a special services employee as a co-maintainer!

Continue reading “FLOSS Weekly Episode 778: OctoPrint — People Are Amazing At Breaking Things”

A workbench with a 3D printer, a home-made frame of metal tubing and 3D printed brackets and phone holders. 3 iOS devices and 1 Android phone arranged around the printer with a clock and 3 different camera angles around the print bed

Even 3D Printers Are Taking Selfies Now

We love watching 3D prints magically grow, through the power of timelapse videos. These are easier to make than ever, due in no small part to a vibrant community that’s continuously refining tools such as Octolapse. Most people are using some camera they can connect to a Raspberry Pi, namely a USB webcam or CSI camera module. A DSLR would arguably take better pictures, but they can be difficult to control, and their high resolution images are tougher for the Pi to encode.

If you’re anything like us, you’ve got a box or drawer full of devices that can take nearly as high-quality images as a DSLR, some cast-off mobile phones. Oh, that pile of “solutions looking for a problem” may have just found one! [Matt@JemRise] sure has, and in the video after the break, you can see how not one but four mobile phones are put to work.

Continue reading “Even 3D Printers Are Taking Selfies Now”

Custom Prusa MK3 Fan Duct Gives Camera Perfect View

A growing trend is to mount a borescope “inspection camera” near a 3D printer’s nozzle to provide a unique up-close view of the action. Some argue that this perspective can provide valuable insight if you’re trying to fine tune your machine, but whether or not there’s a practical application for these sort of nozzle cams, certainly everyone can agree it makes for a pretty cool video.

[Caelestis Cosplay] recently decided to outfit his Prusa i3 MK3S+ with such a camera, and was kind enough to share the process in a write-up. The first step was to find a community-developed fan duct, which he then modified to hold the 7 mm camera module. Since the duct blows right on the printer’s nozzle, it provides an ideal vantage point.

The camera module included a few tiny SMD LEDs around the lens, but [Caelestis Cosplay] added holes to the fan duct to fit a pair of 3 mm white LEDs to really light things up. While modifying the printed parts took some effort, he says the hardest part of the whole build was salvaging a 5X lens from a handheld magnifier and filing it down so it would fit neatly over the camera. But judging by the sharp and bright demo video he’s provided, we’d say the extra effort was certainly worth it.

After covering how the camera rig was put together, [Caelestis Cosplay] then goes over how it was integrated into OctoPrint, including how the external LEDs are switched on and off. He’s running OctoPrint on a Raspberry Pi, though as we’ve covered recently, a small form factor desktop computer could just as easily run the show.

Continue reading “Custom Prusa MK3 Fan Duct Gives Camera Perfect View”