Autonomous Delivery: Your Impulse Buys Will Still Be Safe

I heard a “Year in Review” program the other day on NPR with a BBC World Service panel discussion of what’s ahead for 2017. One prediction was that UAV delivery of packages would be commonplace this year, and as proof the commentator reported that Amazon had already had a successful test in the UK. But he expressed skepticism that it would ever be possible in the USA, where he said that “the first drone that goes over somebody’s property will be shot down and the goods will be taken.”

He seemed quite sincere about his comment, but we’ll give him the benefit of the doubt that he was only joking to make a point, not actually grotesquely ignorant about the limitations of firearms or being snarky about gun owners in the US. Either way, he brings up a good point: when autonomous parcel delivery is commonplace, who will make sure goods get to the intended recipient?

Continue reading “Autonomous Delivery: Your Impulse Buys Will Still Be Safe”

Retrotechtacular: Social Hacking is Nothing New

If you watch enough mainstream TV and movies, you might think that hacking into someone’s account requires a huge monitor, special software, and intricate hand gestures. The reality is way more boring. Because people tend to choose bad passwords, if you have time, you can task a computer with quietly brute-forcing the password. Then again, not everyone has a bad password and many systems will enforce a timeout after failed attempts or require two-factor authentication, so the brute force approach isn’t what it used to be.

Turns out the easiest way to get someone’s password is to ask them for it. Sure, a lot of people will say no, but you’d be surprised how many people will tell you. That number goes up dramatically when you make them think you are with the IT department or their Internet provider. That’s an example of social engineering. You can define that many ways, but in this case it boils down to getting people to give you what you want based on making them believe you are something you aren’t.

Everything Old…

We think of social engineering as something new, but really–like most cybercrime–it is just the movement of old-fashioned crime to the digital world. What got me thinking about this is a service from Amazon called “Mechanical Turk.”

That struck me as odd when I first heard it because for product marketing it is pretty bad unless you are selling turkey jerky or something. If you tell me “Amazon Simple Storage Service” I can probably guess what that might be. But what’s Mechanical Turk?

Mechanical Turk

Continue reading “Retrotechtacular: Social Hacking is Nothing New”

What’s So Bad about the Imperial System Anyway?

As a Hackaday writer, you can never predict where the comments of your posts will go. Some posts seem to be ignored, while others have a good steady stream of useful feedback. But sometimes the comment threads just explode, heading off into seemingly uncharted territory only tangentially related to the original post.

Such was the case with [Steven Dufresne]’s recent post about decimal time, where the comments quickly became a heated debate about the relative merits of metric and imperial units. As I read the thread, I recalled any of the numerous and similarly tangential comments on various reddit threads bashing the imperial system, and decided that enough was enough. I find the hate for the imperial system largely unfounded, and so I want to rise to its defense.

Continue reading “What’s So Bad about the Imperial System Anyway?”

Explosions that Save Lives

Normally, when something explodes it tends to be a bad day for all involved. But not every explosion is intended to maim or kill. Plenty of explosions are designed to save lives every day, from the highway to the cockpit to the power grid. Let’s look at some of these pyrotechnic wonders and how they keep us safe.

Explosive Bolts

The first I can recall hearing the term explosive bolts was in relation to the saturation TV coverage of the Apollo launches in the late 60s and early 70s. Explosive bolts seemed to be everywhere, releasing umbilicals and restraining the Saturn V launch stack on the pad. Young me pictured literal bolts machined from solid blocks of explosive and secretly hoped there was a section for them in the hardware store so I could have a little fun.

Pyrotechnic fasteners are mechanical fasteners (bolts, studs, nuts, etc.) that are designed to fail in a predictable fashion due to the detonation of an associated pyrotechnic device. Not only must they fail predictably, but they also have to be strong enough to resist the forces they will experience before failure is initiated. Failure is also typically rapid and clean, meaning that no debris is left to interfere with the parts that were previously held together by the fastener. And finally, the explosive failure can’t cause any collateral damage to the fastened parts or nearby structures.

Explosive bolt. Source: Ensign-Bickford Aerospace & Defense
Explosive bolt. Source: Ensign-Bickford Aerospace & Defense

Pyrotechnic fasteners fall into two broad categories. Explosive bolts look much like regular bolts, and are machined out of the same materials you’d expect to find any bolt made of. The explosive charge is usually internal to the shank of the bolt with an initiating device of some sort in the head. To ensure clean, predictable separation, there’s a groove machined into the bolt to create a shear plane.

Frangible nut and booster, post-use. Source: Space Junkie's Space Junk
Frangible nut and booster, post-use. Source: Space Junkie’s Space Junk

Frangible nuts are another type of pyrotechnic fastener. These tend to be used for larger load applications, like holding down rockets. Frangible nuts usually have two smaller threaded holes adjacent to the main fastener thread; pyrotechnic booster charges split the nut across the plane formed by the threaded holes to release the fastener cleanly.

“Eject! Eject! Eject!”

Holding back missiles is one thing, but where pyrotechnic fasteners save the most lives might be in the cockpits of fighter jets around the world. When things go wrong in a fighter, pilots need to get out in a hurry. Strapping into a fighter cockpit is literally sitting on top of a rocket and being surrounded by explosives. Most current seats are zero-zero designs — usable at zero airspeed and zero altitude — that propel the seat and pilot out of the aircraft on a small rocket high enough that the parachute can deploy before the pilot hits the surface. Dozens of explosive charges take care of ripping the aircraft canopy apart, deploying the chute, and cutting the seat free from the parachuting pilot, typically unconscious and a couple of inches shorter from spinal disc compression after his one second rocket ride.

Behind the Wheel

There’s little doubt that airbags have saved countless lives since they’ve become standard equipment in cars and trucks. When you get into a modern vehicle, you are literally surrounded by airbags — steering wheel, dashboard, knee bolsters, side curtains, seatbelt bags, and even the rear seat passenger bags. And each one of these devices is a small bomb waiting to explode to save your life.

When we think of explosives we tend to think of substances that can undergo rapid oxidation with subsequent expansion of hot gasses. By this definition, airbag inflators aren’t really explosives, since they are powered by the rapid chemical decomposition of nitrogenous compounds, commonly sodium azide in the presence of potassium nitrate and silicon dioxide. But the difference is purely academic; anyone who has ever had an airbag deploy in front of them or watched any of the “hold my beer and watch this” airbag prank video compilations will attest to the explosive power held in that disc of chemicals.

When a collision is detected by sensors connected to the airbag control unit (ACU), current is applied to an electric match, similar to the engine igniters used in model rocketry, buried within the inflator module. The match reaches 300°C within a few milliseconds, causing the sodium azide to rapidly decompose into nitrogen gas and sodium. Subsequent reactions mop up the reactive byproducts to produce inert silicate glasses and add a little more nitrogen to the mix. The entire reaction is complete in about 40 milliseconds, and the airbags inflate fully within 80 milliseconds, only to deflate again almost instantly through vent holes in the back of the bag. By the time you perceive that you were in an accident, the bag hangs limply from the steering wheel and with any luck, you get to walk away from the accident.

Grid Down

We’ve covered a little about utility poles and all the fascinating bits of gear that hang off them. One of the pieces of safety gear that lives in the “supply space” at the top of the poles is the fuse cutout, or explosive disconnector. This too is a place where a small explosion can save lives — not only by protecting line workers but also by preventing a short circuit from causing a fire.

Cutouts are more than just fuses, though. Given the nature of the AC transmission and distribution grid, the lines that cutouts protect are at pretty high voltages of 11 kV or more. That much voltage means the potential for sustained arcing if contacts aren’t rapidly separated; the resulting plasma can do just as much if not more damage than the short circuit. So a small explosive cartridge is used to rapidly kick the fuse body of a cutout out of the frame and break the circuit as quickly as possible. Arc suppression features are also built into the cutout to interrupt the arc before it gets a chance to form.

[Big Clive] recently did a teardown of another piece of line safety gear, an 11 kV lightning arrestor with an explosive disconnector. With a Dremel tool and a good dose of liquid courage, he liberated a carbon slug from within the disconnector, which when heated by a line fault ignites a .22 caliber charge similar to those used with powder actuated fastener tools. The rapid expansion of gasses ruptures the cases of the disconnector and rapidly breaks the circuit.

Conclusion

We’ve covered a few of the many ways that the power of expanding gas can be used in life safety applications. There are other ways, too — snuffing out oil field fires comes to mind, as does controlled demolition of buildings. But the number of explosives protecting us from more common accidents is quite amazing, all the more so when you realize how well engineered they are. After all, these everyday bombs aren’t generally blowing up without good reason.

2016: As The Hardware World Turns

Soon, the ball will drop in Times Square, someone will realize you can turn ‘2018’ into a pair of novelty sunglasses, and the forgotten mumbled lyrics of Auld Lang Syne will echo through New Year’s Eve parties. It’s time once again to recount the last 366 days, and what a year it’s been.

Arduino got into an argument with Arduino and Arduino won. We got new Raspberry Pis. Video cards are finally getting to the point where VR is practical. The FCC inadvertently killed security in home routers before fixing the problem. All of this is small potatoes and really doesn’t capture the essence of 2016. It’s been a weird year.

Want proof 2016 was different? This year, Microsoft announced they would provide a Linux ‘shim’ with every version of Windows. By definition, 2016 was the year of the Linux desktop. That’s how weird things have been in 2016.

Continue reading “2016: As The Hardware World Turns”

In Defense Of The Electric Chainsaw

Here at Hackaday we are a diverse bunch, we all bring our own experience to the task of bringing you the best of the hardware scene. Our differing backgrounds were recently highlighted by a piece from my colleague [Dan] in which he covered the teardown of a cordless electric chainsaw.

It was his line “Now, we’d normally shy away from any electric chainsaw, especially a cordless saw, and doubly so a Harbor Freight special“. that caught my eye. I’m with him on cordless tools which I see as a cynical ploy from manufacturers to ensure 5-yearly replacements, and I agree that cheap tools are a false economy. But electric chainsaws? Here on this small farm, they’re the saw of choice and here’s why.

Continue reading “In Defense Of The Electric Chainsaw”

Hackspace U

No Timmy, we're not preparing you for a life of mindless drudgery! PD, via Wikimedia Commons.
No Timmy, we’re not preparing you for a life of mindless drudgery! PD, via Wikimedia Commons.

It’s funny, how obsessed we are with qualifications these days. Kids go to school and are immediately thrust into a relentless machine of tests, league tables, and exams. They are ruthlessly judged on grades, yet both the knowledge and qualifications those grades represent so often boil down to relatively useless pieces of paper. It doesn’t even end for the poor youngsters when they leave school, for we are now in an age in which when on moving on from school a greater number of them than ever before are expected to go to university. They emerge three years later carrying a student debt and a freshly-printed degree certificate, only to find that all this education hasn’t really taught them the stuff they really need to do whatever job they land.

A gold standard of education is revealed as an expensive piece of paper with a networking opportunity if you are lucky. You need it to get the job, but in most cases the job overestimates the requirement for it. When a prospective employer ignores twenty years of industry experience to ask you what class of degree you got twenty years ago you begin to see the farcical nature of the situation.

In our hackspaces, we see plenty of people engaged in this educational treadmill. From high schoolers desperately seeking to learn something other than simply how to regurgitate the textbook, through university students seeking an environment closer to an industrial lab or workshop, to perhaps most interestingly those young people who have eschewed university and gone straight from school into their own startups.

Continue reading “Hackspace U”