Go Small, Get Big: The Hack that Revolutionized Bioscience

Few people outside the field know just how big bioscience can get. The public tends to think of fields like physics and astronomy, with their huge particle accelerators and massive telescopes, as the natural expressions of big science. But for decades, biology has been getting bigger, especially in the pharmaceutical industry. Specialized labs built around the automation equipment that enables modern pharmaceutical research would dazzle even the most jaded CERN physicist, with fleets of robot arms moving labware around in an attempt to find the Next Big Drug.

I’ve written before on big biology and how to get more visibility for the field into STEM programs. But how exactly did biology get big? What enabled biology to grow beyond a rack of test tubes to the point where experiments with millions of test occasions are not only possible but practically required? Was it advances in robots, or better detection methodologies? Perhaps it was a breakthrough in genetic engineering?

Nope. Believe it or not, it was a small block of plastic with some holes drilled in it. This is the story of how the microtiter plate allowed bioscience experiments to be miniaturized to the point where hundreds or thousands of tests can be done at a time.

Continue reading “Go Small, Get Big: The Hack that Revolutionized Bioscience”

You’re the Only One not Playing with Unity

It wasn’t too long ago that one could conjecture that most hackers are not avid video game players. We spend most of our free time taking things apart, tinkering with microcontrollers and reading the latest [Jenny List] article on Hackaday.com. When we do think of video games, our neurons generally fire in the direction of emulating a console on a single board computer, such as a Raspberry Pi or a Beaglebone. Or even emulating the actual console processor on an FPGA. Rarely do we venture off into 3D programs meant to make modern video games. If we can’t export an .STL with it, we’re not interested. It’s just not our bag.

Oculus Rift changed this. The VR headset was originally invented for 3D video games, but quickly became a darling to hackers the world over. Virtual Reality technology is far bigger than just video games, and brings opportunity to many fields such as real estate, construction, product visualization, education, social interaction… the list goes on and on.

The Oculus team got together with the folks over at Unity in the early days to make it easy for video game makers to make content for the Rift. Unity is a game engine designed with a shallow learning curve and is available for free for non-commercial use. The Oculus Rift can be integrated into a Unity environment with the check of a setting and importing a small package, available on the Oculus site. This makes it easy for anyone interested in VR technology to get a Rift and start pumping out content.

Hackers have taken things a step further and have written scripts that allow Unity to communicate with an Arduino. VR is fun. But VR plus physical reality is just down right exciting! In this article, we’re going to walk you through setting up your Oculus Rift and Unity game engine to communicate with the outside world via an Arduino.

Continue reading “You’re the Only One not Playing with Unity”

MRIs: Why Are They So Loud?

My dad was scheduled for his first MRI scan the other day, and as the designated family technical expert, Pop had plenty of questions for me about what to expect. I told him everything I knew about the process, having had a few myself, but after the exam he asked the first question that everyone seems to ask: “Why is that thing so damn loud?”

Sadly, I didn’t have an answer for him. I’ve asked the same question myself after my MRIs, hoping for a tech with a little more time and lot more interest in the technology he or she uses to answer me with more than the “it’s the machine that makes the noise” brush-off. Well, duh.

MRI is one of those technologies that I don’t feel I have a firm enough grasp on, and it seems like something I should really be better versed in. So I decided to delve into the innards of these modern medical marvels to see if I can answer this basic question, plus see if I can address a few more complicated questions.

Continue reading “MRIs: Why Are They So Loud?”

Megabots, Colliders, Rockets, Tunnels Underground, and Other Big Dumb Ideas Will Save Us

Humanity is a planetwide force. We have the power to change our weather. We have the power to change the shape of the land. We have the power to selectively wipe a species from this earth if we choose.  We’ve had this power for a while and we’re still coming to terms with it. Many of us even deny it.

With such power, what do we do? We have very few projects which are in line with our ability. Somewhere in the past few years, I feel like most of us have lost our audacity. We’ve culturally come to appreciate the safe bet too much. We pull the dreamers and doers down. We want to solve the small problems first, and see if we have time for the big problems later. We don’t dream big enough, and there is zero reason for this hesitation. We could leverage our planetwide power for planetwide improvements. Nothing is truly stopping us. No law, no government, nothing.

To put it simply, as far as technology goes, everything is still low-hanging fruit. We’ve barely done anything. Even some of our greatest accomplishments can happen randomly in nature. We’ve not left our planet in any numbers or for any length of time. Our cities are disorganized messes. In every single field today, the unexplored territory is orders larger than the explored. Yet despite this vast territory, there are very few explorers. People want to optimize the minutia of life. A slightly faster processor for a slightly smaller phone. It’s okay.

Yet that same small optimization applied to a larger effort could have vast positive impact. Those same microprocessors could catalog our planet or drive probes into space. The very same efforts we spend on micro upgrades could be leveraged if we just look at the bigger picture then get out of our own way. All that is lacking is ambition. Money, time, skill, industry, and people are all there, waiting. We have the need for and have the resources to support ten thousand Elon Musks, not just the one.

Big projects make us bigger than our cellphones and Facebook. When you see a rocket launch into the sky, suddenly, “the world” becomes, simply, “a world.” Order of magnitude improvements reduce the order of our perception of previously complex problems. They should be our highest goal. Whatever field you’re in, you should be trying to be ten times better than the top competitor.

However, there are some societal changes that have to occur before we can.

Continue reading “Megabots, Colliders, Rockets, Tunnels Underground, and Other Big Dumb Ideas Will Save Us”

DIY Raspberry Neural Network Sees All, Recognizes Some

As a fun project I thought I’d put Google’s Inception-v3 neural network on a Raspberry Pi to see how well it does at recognizing objects first hand. It turned out to be not only fun to implement, but also the way I’d implemented it ended up making for loads of fun for everyone I showed it to, mostly folks at hackerspaces and such gatherings. And yes, some of it bordering on pornographic — cheeky hackers.

An added bonus many pointed out is that, once installed, no internet access is required. This is state-of-the-art, standalone object recognition with no big brother knowing what you’ve been up to, unlike with that nosey Alexa.

But will it lead to widespread useful AI? If a neural network can recognize every object around it, will that lead to human-like skills? Read on. Continue reading “DIY Raspberry Neural Network Sees All, Recognizes Some”

From 50s Perceptrons To The Freaky Stuff We’re Doing Today

Things have gotten freaky. A few years ago, Google showed us that neural networks’ dreams are the stuff of nightmares, but more recently we’ve seen them used for giving game character movements that are indistinguishable from that of humans, for creating photorealistic images given only textual descriptions, for providing vision for self-driving cars, and for much more.

Being able to do all this well, and in some cases better than humans, is a recent development. Creating photorealistic images is only a few months old. So how did all this come about?

Continue reading “From 50s Perceptrons To The Freaky Stuff We’re Doing Today”

Automate the Freight: Maritime Drone Deliveries

Ships at sea are literally islands unto themselves. If what you need isn’t on board, good luck getting it in the middle of the Pacific. As such, most ships are really well equipped with spare parts and even with raw materials and the tools needed to fabricate most of what they can’t store, and mariners are famed for their ability to make do with what they’ve got.

But as self-sufficient as a ship at sea might be, the unexpected can always happen. A vital system could fail for lack of a simple spare part, at best resulting in a delay for the shipping company and at worst putting the crew in mortal danger. Another vessel can be dispatched to assist, or if the ship is close enough ashore a helicopter rendezvous might be arranged. Expensive options both, which is why some shipping companies are experimenting with drone deliveries to and from ships at sea. Continue reading “Automate the Freight: Maritime Drone Deliveries”