Modified Baby Monitor Interrupts Your Groove in Case of Emergency

You try to be good, but the temptation to drown out the noise of parenthood with some great tunes is just too much to resist. The music washes over you, bringing you back to simpler times. But alas, once you plug in the kids started running amok, and now the house is on fire and there’s the cleaning up to do and all that paperwork. Maybe you should have tried modifying a baby monitor to interrupt your music in case of emergency?

Starting with an off-the-shelf baby monitor, [Ben Heck] takes us through the design goals and does a quick teardown of the circuit. A simple audio switching circuit is breadboarded using an ADG436 dual SPDT chip to allow either the baby monitor audio or music fed from your favorite source through to the output. [Ben] wisely chose the path of least resistance to detecting baby noise by using the volume indicating LEDs on the monitor. A 555 one-shot trips for a few seconds when there’s enough noise, which switches the music off and lets you listen in on [Junior]. The nice touch is that all the added components fit nicely in the roomy case and are powered off the monitor’s supply.

Maybe you’d prefer listening to the nippers less than watching them? In that case, this impromptu eye-in-the-sky baby camera might be a better choice.

Continue reading “Modified Baby Monitor Interrupts Your Groove in Case of Emergency”

Humidity Sensor Shootout

If you want to measure humidity (and temperature, and maybe even barometric pressure) in a device that you’re building, have a look at this comprehensive test of seven different options. We’re going to summarize the results here, but you’ll really want to read up on the testing methodology — it’s great science hacking. Did you know about using saturated salt solutions to produce constant humidity levels for calibration? We didn’t.

The eBay hacker favorite, the so-called DHT22 module, doesn’t fare all that well, with one of six that [Robert] tested being basically horrible, and three of them breaking within two years of use. The one that works well, however, is pretty good. Feeling lucky?

The Bosch BME280 looks great. It costs a bit more as a bare part, and a few times more than that when it is mounted on a friendly module, but it seems to be very reliable. And you get a barometer thrown in for the extra work. Indeed, it performed so well that Hackaday contributor [Nava Whiteford] put the part under a scanning electron microscope to figure out what’s going on.

The other sensors were fine, with the HTU21D and SHT71 being standouts for their ultra-fast response. For the full details, go click on that link at the top. Having just installed a sextet of DHT22s in our house last year, we’re left with that sinking feeling that we may have gotten what we paid for, which wasn’t much. At least they’re all still running.

Thanks to [Dodutils] and [mac012345] via comments in another thread.

OWL Insecure Internet of Energy Monitors

[Chet] bought an electricity monitor from OWL, specifically because it was open and easy to hack on at him within the confines of his home network. Yay! Unfortunately, it also appears to be easy to hack read outside of his home network too, due to what appears to be extraordinarily sloppy security practices.

The short version of the security vulnerability is that the OWL energy monitors seem to be sending out their data to servers at OWL, and this data is then accessible over plain HTTP (not HTTPS) and with the following API: http://beta.owlintuition.com/api/electricity/history_overview.php?user=&nowl=&clientdate=. Not so bad, right? They are requiring username and password, plus the ID number of the device. Maybe someone could intercept your request and read your meter remotely, because it’s not encrypting the transaction?

Nope. Much worse. [Chet] discovered that the username and password fields appear not to be checked, and the ID number is the device’s MAC address which makes is very easy to guess at other device IDs. [Chet] tried 256 MACs out, and got 122 responses with valid data. Oh my!

Take this as a friendly reminder and a cautionary tale. If you’re running any IoT devices, it’s probably worth listening to what they’re saying and noting to whom they’re saying it, because every time you send your data off to “the cloud” you’re trusting someone else to have done their homework. It is not a given that they will have.

Comfort Thermometer With Impressive LED Display

A frequent early project for someone learning to use a microcontroller such as an Arduino board involves hooking up a temperature sensor and an LCD display to make a digital thermometer. Not many components are involved, but it provides a handy practical introduction to interfacing peripherals. Once you’ve passed that step in your tech education, do you ever return to thermometers? Probably not, after all what can you add to a thermometer but a sensor and a display?

Perhaps if you have asked yourself that question you might be interested in [Richard Stevens]’s thermometer project, as he refers to it, a Comfort Thermometer Display. It takes the form of an Ikea Ribba frame inset with 517 LEDs arranged as a central set of seven segment displays, a ring of bar graphs, and an outer ring of RGB LEDs. Behind the scenes is a mass of cabling, and four shaped pieces of stripboard to fit the area around the LEDs. The display cycles through readings for temperature, heat index, and humidity.

Powering it all are a brace of microcontrollers: an ATMega328 for the 7-segments and a range of PICs controlling the bar graphs and RGB LEDs. Another PIC handles RF communication with the sensors, which are housed in a remote box. We’ve embedded the video of the device in operation below the break, and we’re sure you’ll agree it’s an impressive piece of work.

Continue reading “Comfort Thermometer With Impressive LED Display”

SST Is A Very Tidy ESP8266 Smart Thermostat

The smart thermostat has become in a way the public face of the Internet of Things. It’s a demonstration that technological uptake by the general public is driven not by how clever the technology is, but by how much use they can see in it. A fridge that offers your recipes or orders more eggs may be a very neat idea, but at street level a device allowing you to turn your heating on at home before you leave work is much cooler. Products like Nest or Hive have started to become part of normal suburban life.

There is no reason though for an IoT thermostat to be a commercial product like the two mentioned. Our subject today demonstrates this; SST is a Wi-Fi smart thermostat using an ESP8266 that can be controlled by an app, thanks to its use of the open-source Souliss IoT Framework.

The build is very well finished, with PCBs, colour display and other components in a neat 3D-printed box. It’s a project that you could put in front of an end-user, it’s finished to such a high standard. Physical entity files are available from the hackaday.io page linked above, while its firmware is available in a GitHub repository. THere is a video showing some of the device’s capabilities, which we’ve put below the break.

Continue reading “SST Is A Very Tidy ESP8266 Smart Thermostat”

Cheap Cat Feeder Enhances Sleep

We’ll admit it: we sometimes overcomplicate things. Look at [Peter Weissbrod’s] automated cat feeder, for example. It isn’t anything more than a bottle, a servo, some odds and ends, and an Arduino. However, it lets him sleep in without his cat waking him for service.

We looked at the code and thought, “This thing will just dispense food all the time! That’s not what you want!” Then we looked closer. [Peter] uses a common household timer to just turn the device on in the morning, let it run for a bit, and then turns it off. You can see a video of the mechanism, below.

Continue reading “Cheap Cat Feeder Enhances Sleep”

Police Want Alexa Data; People Begin to Realize It’s Listening

It is interesting to see the wide coverage of a police investigation looking to harvest data from the Amazon Echo, the always-listening home automation device you may know as Alexa. A murder investigation has led them to issue Amazon a warrant to fork over any recordings made during the time of a crime, and Amazon has so far refused.

Not too long ago, this is the sort of news would have been discussed on Hackaday but the rest of my family would have never heard about it. Now we just need to get everyone to think one step beyond this and we’ll be getting somewhere.

What isn’t being discussed here is more of concern to me. How many of you have a piece of tape over your webcam right now? Why did you do that? It’s because we know there are compromised systems that allow attackers to turn on the camera remotely. Don’t we have to assume that this will eventually happen with the Echo as well? Police warrants likely to affect far less users than account breaches like the massive ones we’ve seen with password data.

All of the major voice activated technologies assert that their products are only listening for the trigger words. In this case, police aren’t just looking for a recording of someone saying “Alexa, help I’m being attacked by…” but for any question to Alexa that would put the suspect at the scene of the crime at a specific time. Put yourself in the mind of a black hat. If you could design malware to trigger on the word “Visa” you can probably catch a user giving their credit card number over the phone. This is, of course, a big step beyond the data already stored from normal use of the system.

It’s not surprising that Amazon would be served a warrant for this data. You would expect phone records (although not recordings of the calls) to be reviewed in any murder case. Already disclosed in this case is that a smart water meter from the home reported a rather large water usage during the time of the murder — a piece of evidence that may be used to indicate a crime scene clean-up effort.

What’s newsworthy here is that people who don’t normally think about device security are now wondering what their voice-controlled tech actually hears them say. And this is a step in the right direction.