Make your own Ninja Chess Board

You’re going to want to take a look at this fun project [Alistair MacDonald] just finished up. He calls it Ninja Chess.

He’s had the idea to 3D print a complete set of ninjas vs pirates for a chess board, but, let’s be real;  printing thirty-two chess pieces would take a long time. He opted to use a laser cutter instead, and so far, only has the Ninja characters drawn. But it still makes for a pretty awesome chess board.

Ninja Character

He drew the characters in Inkscape and they’re pretty darn cute. He has all the files available over on his Instructable including the .DXF for the laser cut outlines, and the image files for you to print off the decals. But unless you’re good with scissors, we recommend using your hackerspace’s automated paper cutter to help speed things up.

Is it a hack? Not really, but it’d be an excellent addition to anyone’s workshop. And while we sail under the Jolly Wrencher, we too can appreciate the novelty of a Ninja chess board.

For a more detailed build, did you see the 3D laser cut chess pieces we shared a few weeks ago? No that’s not a typo — you can use a laser cutter to do more than just two-dimensional cutting…

Vintage Vinyl Laser-Etched on a Tortilla

[UpgradeTech] had a proof-of-concept itch they needed to scratch: making a playable record out of a tortilla using a laser cutter. The idea was spawned from the goofy “tortilla vinyl” YouTube video.

Uncooked flour tortillas were used. Corn tortillas were too lumpy while cooked tortillas shredded on the record player. To get the recording onto the tortilla, Audacity was used to modify a stereo WAV file. Using the RIAA equalization standard is a great choice here as it was originally adopted to prevent excess wear and tear on record grooves as the needle passed through. A Python script generated the files for the laser cutter, creating a text file with the sound data which was then processed into a vector PDF of the grooves. For each record it takes 30 minutes for the laser cutter to turn a simple flour tortilla into the musical variety.

Each tortilla can play 30-40 seconds of music at 45 or 78 RPM, but they start to warp once they dry out. Time to build a humidor around the record player! There is background noise that can make certain songs harder to hear, but there is unarguably audible music. There is plenty of room for optimizing the sound file, grooves, and cutting. We hope this project inspires others to make their own musical tortilla. Playing with your food has taken on a whole new meaning!

Continue reading “Vintage Vinyl Laser-Etched on a Tortilla”

Move Over Gucci; Laser Cut Handbags Are a Thing

What happens when you want to make a custom handbag with some handy tech features, and have access to a nice laser cutter? You end up doing what [Christian] did: design a assemble a Woman’s Handbag made of Laser-Cut Leather with iPhone charger and LED Light.

The design of the bag was made in Adobe Illustrator and sent off to a Epilog Legend 36EXT laser cutter located in the hackerspace located near [Christian] in Vienna. Once the parts were precision cut, traditional leather sewing methods were used to assemble the handbag (with a little help from a shoe cobbler).

The interior of the bag was lined with old blue jeans and a white LED, which is wired and held into place with conductive thread. Powered by a coin cell and controlled by your choice of a button, or a slide switch, the light helps locating items in the deep bag.

Slide a standard USB battery pack in one of the pockets of the old jeans and you are ready for a night out on the town. Join us after the break for a video showing the design, construction and features of this practical project.

Continue reading “Move Over Gucci; Laser Cut Handbags Are a Thing”

Legit Hack Creates TEA Laser Power by Mr. Wimshurst

It’s a bit scary what you can make with stuff found in the average household, provided you know what you’re doing. How about a TEA laser? Don’t have a high-voltage power supply to run it? Do what [Steven] of did, and power it with a homemade Wimshurst machine.

TEA lasers give off ultraviolet light. In order to see the beam, [Steven] aims it through a glass of water tinted with highlighting-marker juice and onto a sheet of white paper. [Steven] originally used his homemade 30kV DC power supply to light up his TEA laser. He made the laser itself from aluminium foil, angled aluminium, transparency sheets, some basic hardware components, and a 100kΩ resistor.

Although the components are simple, adjusting them so that the laser actually works is quite a feat. [Steven] says he burned holes through several transparencies and pieces of foil before getting it right. Using a Wimshurst machine to power the TEA laser takes another level of patience. It takes about 25 cranks of the static electricity-producing machine to build up enough energy to attempt lasing.

Want to make your own TEA laser, perhaps in a different configuration? [Steven]’s design was based on one of [sparkbangbuzz]’s lasers, which we covered several years ago.

Continue reading “Legit Hack Creates TEA Laser Power by Mr. Wimshurst”

Laser Engraving in Color?

Here’s a fantastic way to add a new dynamic to your laser cut and engraved parts. Did you know it is possible to color your engravings on acrylic? It’s kind of one of those moments where you go “Why didn’t I think of that?”

[Frankie Flood] works at the Digital Craft Research Lab (DCRL for short), which is kind of like a hackerspace for the University of Wisconsin — complete with CNC routers, lasers, 3D printers, and all your basic manufacturing tools.  [Lionel Rocheleau], one of his lab technicians at DCRL was interested in doing some experiments with the laser cutter, so they came up with this experiment…

Continue reading “Laser Engraving in Color?”

The Nicest Home Made Spot Welder We’ve Ever Seen

By golly, look at the build quality of this homemade spot welder.

Just about everyone on here knows it’s quite possible to build one of these things using a re-wrapped microwave transformer, but they’re usually made of wood like the one we swap on Friday, and we often wonder how much real use they get other than “hey look I built a spot welder!”. I myself made one, but then ended up buying a professional one because it works better. Not [Matthew Borgatti] though, his looks better and has more features than even the one I bought!


Why? Because he put some serious thought into his design. He even 3D modeled the whole thing in SolidWorks.

Beyond the excellent laser cut enclosure (complete with ratcheting work piece clamping), [Matt’s] also added an Arduino to create a timing circuit. Most times you just squeeze the clamp, press the button, and watch the metal heat up — “I think that’s good…”

But with an actual timing circuit you can calculate how much time you need versus current and electrode size to produce a good quality weld.

Continue reading “The Nicest Home Made Spot Welder We’ve Ever Seen”

Optics Laboratory Made From LEGO

16A lot of engineers, scientists, builders, makers, and hackers got their start as children with LEGO. Putting those bricks together, whether following the instructions or not, really brings out the imagination. It’s not surprising that some people grow up and still use LEGO in their projects, like [Steve] who has used LEGO to build an optics lab with a laser beam splitter.

[Steve] started this project by salvaging parts from a broken computer projector. Some of the parts were scorched beyond repair, but he did find some lenses and mirrors and a mystery glass cube. It turns out that this cube is a dichroic prism which is used for combining images from the different LCD screens in the projector, but with the right LEGO bricks it can also be used for splitting a laser beam.

The cube was set on a LEGO rotating piece to demonstrate how it can split the laser at certain angles. LEGO purists might be upset at the Erector set that was snuck into this project, but this was necessary to hold up the laser pointer. This is a great use of these building blocks though, and [Steve] finally has his optics lab that he’s wanted to build for a while. If that doesn’t scratch your LEGO itch, we’ve also featured this LEGO lab which was built to measure the Planck constant.