3D Print Your Best Friend A Wheelchair

We all know that 3D printing has been a boon for people with different life challenges. But the Ford Motor Company in Mexico wants to help dogs that need mobility assistance. They’ve designed and released P-Raptor (we presume the P is for perro), a wheelchair for pooches with rear leg issues. The web page is in Spanish, and translating it didn’t seem to work for some reason, but if you have any Spanish, you can probably work it out or cut and paste just the text into your favorite translator.

The design is modular to adapt to different size dogs and different problems. It contains an electric motor in the tires. The tires themselves are oversized to help your friend cover rugged terrain. Dogs want to look cool, too, so a grill with lighting is included.

Continue reading “3D Print Your Best Friend A Wheelchair”

Voyager 2: Communication Reestablished With One Big Shout

You could practically hear the collective “PHEW!” as NASA announced that they had reestablished full two-way communications with Voyager 2 on Friday afternoon! Details are few at this point — hopefully we’ll get more information on how this was pulled off, since we suspect there was some interesting wizardry involved. If you haven’t been following along, here’s a quick recap of the situation.

As we previously reported, a wayward command that was sent to Voyager 2, currently almost 19 light-hours distant from Earth, reoriented the spacecraft by a mere two degrees. It doesn’t sound like much, but the very narrow beamwidth on Voyager‘s high-gain antenna and the vast distance put it out of touch with the Canberra Deep Space Network station, currently the only ground station with line-of-sight to the spacecraft. While this was certainly a problem, NASA controllers seemed to take it in stride thanks to a contingency program which would automatically force the spacecraft to realign itself to point at Earth using its Canopus star tracker. The only catch was, that system wasn’t set to engage until October.

With this latest development, it appears that mission controllers weren’t willing to wait that long. Instead, based on what was universally referred to in the non-tech media as a “heartbeat” from Voyager on August 1– it appears that what they were really talking about was the use of multiple antennas at the Canberra site to pick up a weak carrier signal from the probe — they decided to send an “interstellar shout” and attempt to reorient the antenna. The 70-m DSS-43 dish blasted out the message early in the morning of August 2, and 37 hours later, science and engineering data started streaming into the antenna again, indicating that Voyager 2 was pointing back at Earth and operating fine.

Hats off to everyone involved in making this fix and getting humanity’s most remote outpost back online. If you want to follow the heroics in nearly real-time, or just like watching what goes on at the intersection of Big Engineering and Big Science, make sure you check out the Canberra DSN Twitter feed.

Rocket Stove Efficiently Heats Water

Rocket stoves are an interesting, if often overlooked, method for cooking or for generating heat. Designed to use biomass that might otherwise be wasted, such as wood, twigs, or other agricultural byproducts, they are remarkably efficient and perform relatively complete combustion due to their design, meaning that there are fewer air quality issues caused when using these stoves than other methods. When integrated with a little bit of plumbing, they can also be used to provide a large amount of hot water to something like an off-grid home as well.

[Little Aussie Rockets] starts off the build by fabricating the feed point for the fuel out of steel, and attaching it to a chimney section. This is the fundamental part of a rocket stove, which sucks air in past the fuel, burns it, and exhausts it up the chimney. A few sections of pipe are welded into the chimney section to heat the water as it passes through, and then an enclosure is made for the stove to provide insulation and improve its efficiency. The rocket stove was able to effortlessly heat 80 liters of water to 70°C in a little over an hour using a few scraps of wood.

The metalworking skills of [Little Aussie Rockets] are also on full display here, which makes the video well worth watching on its own. Rocket stoves themselves can be remarkably simple for how well they work, and can even be built in miniature to take on camping trips as a lightweight alternative to needing to carry gas canisters, since they can use small twigs for fuel very easily. We’ve also seen much larger, more complex versions designed for cooking huge amounts of food.

Continue reading “Rocket Stove Efficiently Heats Water”

If The Shoe Doesn’t Fit, Print It!

Usually when we talk about flip-flops here we mean the circuit. But in this case, it is [Jeandre Groenewald’s] 3D-printed shoe design called Sloffies. The shoes use TPU, and the matching package prints in PLA. Of course, you have to pick the size to fit your feet, and there’s an OpenSCAD file that allows you to customize the strap.

Unlike some 3D apparel we’ve seen, these look like a commerical product. Of course, the cool product packaging doesn’t hurt any. Are they comfortable? We don’t know, but our guess is it is no worse than other similar shoes that are made of one material.

Continue reading “If The Shoe Doesn’t Fit, Print It!”

Hackaday Prize 2023: One-Handed Soldering With The Solder Sustainer

For a lot of us, soldering has become so ingrained that it’s muscle memory. We know exactly when the iron is hot enough, how long to leave the tip in contact with the joint to heat it up, and exactly where to dab in the solder to get it to flow. When you’re well-practiced it can be a beautiful thing, but for those who don’t do it frequently, soldering can be frustrating indeed.

The “Solder Sustainer” looks like it just might be aimed at solving that problem, as well as a few others. It comes to us from [RoboticWorx], and while it looks a little like the love child of a MIG welder and a tattoo machine, it’s got a lot going for it. The idea is to make soldering a one-handed task by combining the soldering iron and a solder wire feeder into one compact package. The solder feeder is very reminiscent of a filament extruder on a 3D printer, using a stepper to drive spring-loaded pinch wheels, which forces the solder down a curved 3D-printed tube that directs it toward the tip. The pancake stepper is driven by an ESP32, which also supports the touch sensor that lets you advance the solder. The whole thing can be powered off a USB-C power supply, or using the onboard USB charger that can be connected in line with the soldering iron supply.

The video below shows Solder Sustainer in use. Yes, we know — some of those joints look a little iffy. But that seems to have more to do with technique than with the automatic solder feed. And really, in situations where you’ve previously wished for a third hand while soldering, this would probably be just the thing.

The Solder Sustainer is an entry in the “Gearing Up” round of the 2023 Hackaday Prize. If you’ve got an idea for a tool, jig, fixture, or instrument that makes hacking easier, we want to know about it. But you’d better hurry — the round ends on August 8.

Continue reading “Hackaday Prize 2023: One-Handed Soldering With The Solder Sustainer”

Hackaday Prize 2023: Green Hacks Finalists

Time and tide wait for no hacker, even if they happen to spend their spare time working on the sort of eco-friendly projects that qualified for the Green Hacks challenge of the 2023 Hackaday Prize. This environmentally conscious round ended last month, and after plenty of carbon-neutral debate, our panel of judges have settled on their ten favorite projects.

As a reminder, the following projects will not only receive a $500 cash prize, but will move on to the Finals. They’ll then have until October to put the finishing touches on their creations in an effort to claim one of the final six awards, which includes the Grand Prize of $50,000 and a residency at the Supplyframe DesignLab. Although there can only be ten finalists for each round of the Hackaday Prize, we’d like to thank everyone who put the time and effort into submitting their Green Hacks. We’ve only got one Earth, and we’re all going to have to work together if we want to make sure it stays beautiful for future generations.

Continue reading “Hackaday Prize 2023: Green Hacks Finalists”

A Cycle-Accurate Sega Genesis With FPGA

The Field-Programmable Gate Array (FPGA) is a powerful tool that is becoming more common across all kinds of different projects. They are effectively programmable hardware devices, capable of creating specific digital circuits and custom logic for a wide range of applications and can be much more versatile and powerful than a generic microcontroller. While they’re often used for rapid prototyping, they can also recreate specific integrated circuits, and are especially useful for retrocomputing. [nukeykt] has been developing a Sega Genesis clone using them, with some impressive results.

The Sega Genesis (or Mega Drive) was based around the fairly common Motorola 68000 processor, but this wasn’t the only processor in the console. There were a number of coprocessors including a Z80 and several chips from Yamaha to process audio. This project reproduces a number of these chips which are cycle-accurate using Verilog. The chips were recreated using images of de-capped original hardware, and although it doesn’t cover every chip from every version of the Genesis yet, it does have a version of the 68000, a Z80, and the combined Yamaha processor working and capable of playing plenty of games.

The project is still ongoing and eventually hopes to recreate the rest of the chipset using FPGAs. There’s also ongoing testing of the currently working chips, as some of them do still have a few bugs to work out. If you prefer to take a more purist approach to recreating 90s consoles, though, we recently featured a project which reproduced a Genesis development kit using original hardware.

Thanks to [Anonymous] for the tip!