THP Hacker Bio: Michael R Colton


With many hackers out there realizing how much you can do with a few RF blocks connected to a computer, it’s no surprise software defined radio would make a showing in the semifinalists for The Hackaday Prize. [Michael]‘s project is the PortableSDR, a small, self-contained unit that handles just about everything below 30MHz. No, [Michael] isn’t dealing with gigahertz accessible with fancier SDRs, but that’s not the point: PortableSDR is meant to do everything – vector analysis, a neat waterfall display, transmit and receive – in a small, portable package you can take anywhere. It’s also fairly cheap to build, and of course completely open source.

This isn’t [Michael]‘s first rodeo; he’s built a number of equally cool projects before. He was kind enough to send in a short bio, available below.

[Read more...]

THP Semifinalist: The Moteino


One of the apparent unofficial themes of The Hackaday Prize is the Internet of Things and home automation. While there were plenty of projects that looked at new and interesting ways to turn on a light switch from the Internet, very few took a good, hard look at the hardware required to do that. [Felix]‘s Moteino is one of those projects.

The Moteino is based on the Arduino, and adds a low-cost radio module to talk to the rest of the world. The module is the HopeRF RFM12B or RFM69. Both of these radios operate in the ISM band at 434, 868, or 915 MHz. Being pretty much the same as an Arduino with a radio module strapped to the back, programming is easy and it should be able to do anything that has been done with an ATMega328.

[Felix] has been offering the Moteino for a while now, and already there are a few great projects using this platform. In fact, a few other Hackaday Prize entries incorporated a Moteino into their design; Plant Friends used it in a sensor node, and this project is using it for texting and remote control with a cell phone.

SpaceWrencherThe project featured in this post is a semifinalist in The Hackaday Prize.

Extrinsic Motivation: BASIC For Bluetooth


There’s a lot more to those fancy radio modules you use with your Arduino projects than meets the eye. Many of them are systems on a chip, complete with their own microcontroller and memory that can control your entire blinking LEDs project. Developing for these radio modules is a bit of a challenge, as the IDEs and compilers cost several thousand dollars. [Tim]‘s entry for the Hackaday Prize looks at one of these Bluetooth LE modules – Texas Instrument’s CC2540 and CC2541 – and puts an embedded BASIC interpreter right on the chip.

[Tim]‘s inspiration for this project came from looking at a few popular devices using the CC254X chip. Many of these included a microcontroller and the added costs, complexity, and power requirements that come along with an additional chip. This radio module could easily run any code an ATMega could, and adding another chip to a product seemed like a terrible waste, and certainly not in the spirit of open hardware and software.

The alternative is writing an interpreter for the CC254X chip. He’s chosen BASIC, but added a little bit of Arduino language syntax to make it even easier to develop on. Having already run through a few successful tests involving SPI, I2C and 1-wire devices, [Tim] has a basic system working, but [Tim] admits it does need a little rework to make it easier to use.

It’s a great project, and personally astonishing that it didn’t make the quarterfinal selection for The Hackaday Prize. [Tim] is still working on his project, though, in a great example of extrinsic motivation; he doesn’t need a trip to space to convince him to build something cool.

You can check out [Tim]‘s two minute concept video below.

SpaceWrencherThis project is an official entry to The Hackaday Prize that sadly didn’t make the quarterfinal selection. It’s still a great project, and worthy of a Hackaday post on its own.

[Read more...]

THP Semifinalist: Level, The Ultrawideband Radio Module


When you start looking into the Internet of Things, the first thing you realize is that despite there being grand ideas for Internet connected everything, nobody knows how these things will actually connect to the Internet. There are hundreds of different radio protocols being pushed, and dozens of networking schemes currently in development. The solution to this is a radio module that can do them all, talking to all these modules and serving them up to the Internet. This is the idea of [Hunter Scott]‘s Level, a radio module with a frequency range of 30 MHz to 4.4 GHz. That’ll cover just about everything, including some interesting applications in the TV whitespace.

[Hunter]‘s module is based around TI’s CC430, basically an MSP430 microcontroller and a CC1101 transceiver smooshed together into a single piece of silicon. There’s bit of filtering that makes this usable in the now sorta-empty TV whitespace spectrum, something that a lot of IoT and wireless networking protocols are looking at.

If the form factor of the device looks familiar, that’s because it is; the board itself is Arduino compatible, but not with Arduinos themselves; it will accept shields, though, meaning building a bridge to Ethernet or WiFi to whatever radios this board is talking to is really just a change in firmware.

This board is excellent for experimenting with different radio modules, yes, but it’s also great for experimenting with different radio protocols. [Hunter] has been looking around at different mesh networking protocols.

You can check out [Hunter]‘s two minute video overview, along with a more detailed overview of the schematic below.

SpaceWrencherThe project featured in this post is a semifinalist in The Hackaday Prize.

[Read more...]

PiAware, Automated Airliner Tracking On The Raspberry Pi


For the sufficiently geeky aviation nerd there’s FlightAware, a website that tracks just about every airliner and most private planes currently in flight. The folks at FlightAware compile all the information with the help of a few thousand volunteers around the world that have a bit of hardware to listen to ADS-B transmissions and relay them to the FlightAware servers. Now you can do this with a Raspberry Pi, and as a nice little bonus FlightAware is giving away free enterprise accounts to anyone who does.

Listening in on ADS-B transponders is something Raspberry Pis have been doing for a while, but doing anything useful with the altitude, speed, heading, and registry numbers of various planes flying overhead is pretty much FlightAware’s only reason for existing, and the reason they’ve developed an easy to use software package for the Pi.

Setting everything up requires getting dump1090 running on the Pi, the only hardware required being an RTL-SDR USB TV tuner, a GPS module, and an antenna for 1090 MHz. From there, just send all the data to FlightAware and you get a free enterprise account with them. Not a bad deal for the aviation nerds out there.

Kruger’s Zippo Remote


Inspired by the detonator in the Captain America: The First Avenger movie, [Jon] modified a normal Zippo lighter to activate a relay on a receiver module. His instructables shows how to create such a device by adjusting the insert in such a way that if someone flipped it open, all they would see would be a flint wheel, flint, wick, and all that stuff; nothing would be abnormal. In order to do this, the components would have to be perfectly concealed.

To acquire a remote signal, [Jon] used the whole metal case as an antenna instead of replacing the wick with one. An antenna pin on an RF module was attached to the insert to get the necessary effect. The flint wheel was then turned into a button and a notification LED was installed. Once the code was uploaded and a receiver module was fashioned together, the end product produced a flash of sparks on the other end.

This hack was made for educational use, and is only meant for demonstration purposes.

[Read more...]

DEFCON 22: The HackRF PortaPack

What do you get when you combine one of the best (and certainly one of the best for the price) software defined radios with the user interface of a 10-year-old iPod? The HackRF PortaPack, developed by [Jared Boone], and demonstrated at DEFCON last weekend.

[Jared] is one of the original developers for the HackRF, a 10MHz to 6GHz software defined radio that can also transmit in half duplex. Since the development of the HackRF has (somewhat) wrapped up, [Jared] has been working on the PortaPack, an add-on for the HackRF that turns it into a portable, ARM Cortex M4-powered software defined radio. No, it’s not as powerful as a full computer running GNU Radio, but it does have the capability to listen in on a surprising amount of radio signals.

Because [Jared] is using a fairly low-power micro for the PortaPack, there’s a lot of tricks he’s using to get everything running smoothly. He gave a lightning talk at the Wireless Village at DEFCON going over the strengths and weaknesses of the chip he’s using, and surprisingly he’s using very little floating point arithmetic in his code. You can check out the video for that talk below.

[Read more...]


Get every new post delivered to your Inbox.

Join 93,810 other followers