Making Mittens For A Smartphone

For those of us in the slightly inhospitable parts of the northern hemisphere, it’s freaking cold outside. Spring can’t come sooner, and smartphones won’t work if you’re wearing normal gloves. Smartphones will work if you sew a few bits of conductive thread into your gloves, but if you prefer mittens, you’re out of luck. That’s alright, because [Becky] at Adafruit has great guide for knitting your own smart phone mittens.

Intellectually, the concept of weaving fabric is fairly simple – it’s just interlaced threads that form a flexible sheet. Sewing, too, is fairly straightforward. Knitting, on the other hand, is weird. It’s a single string tied to itself that forms a 3D shell. If you’ve ever picked up a pair of knitting needles, you’ll soon realize whoever invented knitting is perhaps the greatest forgotten genius in all of human history. Lucky, then, that [Becky] has a lot of links that go through how to knit, and how to turn yarn into a pair of mittens with this pattern.

To make these mittens work with a smartphone, [Becky] is using a stainless conductive yarn stitched into the thumb and fingertips of the mitten. It works, and now you can use your touchscreen device no matter how cold it is.

Continue reading “Making Mittens For A Smartphone”

Laugh Track Jacket is Actually a Blazer

Picture it: your first open mic night at Larry’s Laugh Lounge. You’re up second in the lineup. It’s better than going first, but the crowd is far from hitting the two-drink minimum and your dad jokes are going over like a lead balloon. What now? Time for your secret weapon. You throw out the ‘tough crowd’ line while casually reaching into a pocket of your herringbone blazer. You press a button and the sound of crickets reaches the microphone. Someone chortles near the back. You smile, and remembering that Barbie joke from Reddit, your act takes a turn for the profane and the sweet sound of your first real laugh is forever burned in your memory.

This laugh track jacket from Adafruit’s [Becky Stern] is based on their own audio FX board, a standalone unit that can store and play WAV and OGG files. The board is also available with 16MB of flash for extended pre-recorded Foley artistry. This is an easy solder-and-sew project with a lot of wearable applications, and all of the components are available in the Adafruit store. There are plenty of places to get free sound effects that are already in WAV format, as the board does not support MP3s. As always, [Becky] has provided a clear and thorough guide with plenty of pictures and an introduction video that you can see after the break.

Continue reading “Laugh Track Jacket is Actually a Blazer”

An OLED Ring for Bluetooth Notifications

Wearables are the next frontier of amateur electronics, and [Kevin]’s Arduboy ring is one of the best examples we’ve seen yet.

Inside the Arduboy is an nRF51822 – a chipset with Bluetooth Low Energy, an ARM Cortex M0,256k of Flash, and 16k of RAM. There’s also a an OLED and a touch button for displaying notifications from a phone, with the ability to reply to these notifications.

The enclosure for the ring is rather interesting. It’s a bit thick, but that’s for a reason – there’s a 40mAh battery stuffed along the sides of the ring. The enclosure itself is 3D printed to spec, and contrary to some beliefs, there’s nothing wrong with bending a LiPo cell once. Sure, it only has four hours of battery life with the display on, but it has a 24 hour battery life in standby mode, making it almost useful as an everyday wearable.

This is [Kevin]’s second wearable, the first being the Ardubracelet, an extremely interesting OLED bracelet with three different displays.  The Arduboy is much more compact and comes extremely close to looking like a product. You can check out the video of it below.

Continue reading “An OLED Ring for Bluetooth Notifications”

Using Lasers for Hair Growth

HowToLou is back with a rather interesting build: One hundred laser diodes for hair growth.

Before you guffaw at the idea of lasers regrowing hair lost to male pattern baldness, there’s a surprising amount of FDA documents covering the use of laser diodes and red LEDs for hair growth and an interesting study covering teeth regrowth with lasers. Yes folks, it’s a real thing, but something that will never get a double-blind study for obvious reasons.

[Lou] is building his hat with 100 laser diodes, most of which were sourced from Amazon. These diodes were implanted in a piece of foam flooring, a rather interesting solution that puts dozens of diodes in a flexible module that’s pretty good for making a wearable device.

The lasers are powered by three AA batteries, stuffed into a four-slot battery holder that was modified to accommodate a power switch. [Lou] has been wearing a nine-diode hat for a month now, and if the pictures are to be believed, he is seeing a little bit of hair growth. At the very least, it’s an interesting pseudo-medical build that seems to be producing results.

Hats like these are commercially available for about $700. [Lou] built his for about $60. We’re calling that a win even if it doesn’t end up working to [Lou]’s satisfaction. Just don’t look at the lasers with your remaining eye.

Continue reading “Using Lasers for Hair Growth”

Making MicroView Wordy

Despite the MicroView shipping a ton of units, we haven’t seen many projects using this tiny Arduino and OLED display in a project. Never fear, because embedded systems engineer, podcaster, and Hackaday Prize judge [Elecia White] is here with a wearable build for this very small, very cool device.

The size and shape of the MicroView just cried out to be made into a ring, and for that, [Elicia] is using air-drying bendy polymer clay. To attach the clay to the MicroView, [Elecia] put some female headers in a breadboard, and molded the clay over them into a ring shape. It works, and although [Elecia] didn’t do anything too tricky with the headers and clay, there are some interesting things you could do running wires through the clay.

What does this ring do? It’s a Magic 8 Ball, a game of Pong controlled by an accelerometer, a word-of-the-day thing (with definitions), all stuffed into a brass silicon, OLED, and clay knuckle. Video below.

If you’re wondering, Turbillion (n). A whirl; a vortex.

Continue reading “Making MicroView Wordy”

Cosplaying as HAL 9000

2001: A Space Odyssey is one of the greatest films of all time, but unlike every other masterpiece of SciFi, you’re not going find many people cosplaying as characters from the movie. Going as a monolith to a con would be hilarious, but [jacqueslelezard] had an even better idea in mind: a HAL 9000 costume.

The costume itself is just bits of painted cardboard, shiny material (we’d go with aluminum tape), some black mosquito netting to see out of, and in a stroke of brilliance, a tablet that will display HAL’s unblinking eye to con attendees. If you’re extraordinarily clever, it might be possible to sample lines from the movie and play them through the tablet. This is, unfortunately, the best way to replicate the voice of HAL, at least until someone gets the money to have [Douglas Rain] sit in for some voice work.

The only drawback to the costume is the propensity for the wearer to hit their head on doorways and low thresholds. This problem could be solved simply by increasing the size of the costume, but then you’re back in monolith territory. So, what do you want to be, a murderous computer or a galactic swiss army knife?

“Stomach Shot” Halloween Costume

Halloween may have come and gone, but [Luis] sent us this build that you’ll want to check out. An avid Walking Dead fan, he put in some serious effort to an otherwise simple bloody t-shirt and created this see-through “stomach shot” gunshot wound.

The project uses a Raspi running the Pi Camera script to feed video from a webcam on the back of his costume to a 7″ screen on the front. [Luis] attached the screen to a GoPro chest harness—they look a bit like suspenders—to keep it centered, then built up a layer of latex around the display to hide the hard edges and make it more wound-like. Power comes from a 7.4V hobby Lipo battery plugged into a 5V voltage converter.

After ripping a small hole in the back of his t-shirt for the webcam and a large hole in the front for the screen, [Luis] applied the necessary liberal amount of fake blood to finish this clever shotgun blast effect.