Smart Sutures

Researchers at Tufts University are experimenting with smart thread sutures that could provide electronic feedback to recovering patients. The paper, entitled “A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnosis”, is fairly academic, but does describe how threads can work as pH sensors, strain gauges, blood sugar monitors, temperature monitors, and more.

Conductive thread is nothing new but usually thought of as part of a smart garment. In this case, the threads close up wounds and are thus directly in the patient’s body. In many cases, the threads talked to an XBee LilyPad or a Bluetooth Low Energy module so that an ordinary cell phone can collect the data.

Continue reading “Smart Sutures”

Absolute 3D Tracking With EM Fields

[Chris Gunawardena] is still holding his breath on Valve and Facebook surprising everyone by open sourcing their top secret VR prototypes. They have some really clever ways to track the exact location and orientation of the big black box they want people to strap to their faces. Until then, though, he decided to take his own stab at the 3D tracking problems they had to solve. 

While they used light to perform the localization, he wanted to experiment with using electromagnetic fields to perform the same function. Every phone these days has a magnetometer built in. It’s used to figure out which way is up, but it can also measure the local strength of magnetic fields.

Unfortunately to get really good range on a magnetic field there’s a pesky problem involving inverse square laws. Some 9V batteries in series solved the high current DC voltage source problem and left him with magnetic field powerful enough to be detected almost ten centimeters away by his iPhone’s magnetometer.

As small as this range seems, it ended up being enough for his purposes. Using the existing math and a small iOS app he was able to perform rudimentary localization using EM fields. Pretty cool. He’s not done yet and hopes that a more sensitive magnetometer and a higher voltage power supply with let him achieve greater distances and accuracy in a future iteration.

Lifting The Secret Of The Wooden Rings

Making beautiful things from epoxy and wood happens to be [Peter Brown’s] area of expertise. He was recently quested with reverse engineering the ring design of the Canadian manufacturer secret wood — a unique combination of splintered wood and epoxy — and achieved impressive results.

Continue reading “Lifting The Secret Of The Wooden Rings”

Bewegungsfelder Is A Wireless IMU Motion Capturing System

For several years, hackers have been exploring inertial measurement units (IMUs) as cheap sensors for motion capturing. [Ivo Herzig’s] final Diploma project “Bewegungsfelder” takes the concept of IMU-based MoCap one step further with a freely configurable motion capturing system based on strap-on, WiFi-enabled IMU modules.

Continue reading “Bewegungsfelder Is A Wireless IMU Motion Capturing System”

3D-Printed Prosthetic Puts the Power in the Hands of Those Who Need It

In recent years, prosthetics have seen a dramatic increase in innovation due to the rise of 3D printing. [Nicholas Huchet] — missing a hand due to a workplace accident in 2002 — spent his residency at Fab Lab Berlin designing, building, testing and sharing the files and tutorials for a prosthetic hand that costs around 700 Euros.

[Huchet] founded Bionicohand with the intent of using the technology to make prosthetic limbs available to those without reliable medical or social assistance — as well as for amputees in countries without such systems — which can cost tens of thousands of dollars. The parts took a week to print while assembly and modifications to suit [Huchet’s] arm took another four days, but the final product is functional and uses affordable myoelectric sensors, boards and servos — plus there’s always the option of using a basic 3D scanner to accommodate for existing prosthetic mounts for the individual.

Continue reading “3D-Printed Prosthetic Puts the Power in the Hands of Those Who Need It”

Altitude Controlled LED Jacket Changes Color as You Climb

When your climbing gym throws a “glow in the dark” party, how can you stand out? For [Martijn], the answer was obvious. He made a jacket adorned with 32 WS2812 addressable LEDs whose color is addressable depending on the altitude to which he has climbed.
The build is centered on an Arduino Pro Mini with a barometric sensor and an NRF24L01 for radio comms. A pair of pockets contain AA batteries for power, and he’s all set to climb.
A base station Arduino with the same set-up transmits an up-to-the-minute reading for ground level temperature, which is compared to the local reading from the barometric sensor and used to calculate a new color for the LEDs. A Kalman filter deals with noise on the pressure reading to assure a stable result. Arduino sketches for both ends are provided on the Hackaday.io page linked above.
The LEDs are mounted on the jacket’s stretch fabric with an excess of  wire behind the scenes to cater for the stretch. You can see the resulting garment in the short YouTube video below the break.

Continue reading “Altitude Controlled LED Jacket Changes Color as You Climb”

Skin Bling: Wearable Electronics from Golden Temporary Tattoos

MIT Media Lab and Microsoft have teamed up to take wearable devices one step further — they’ve glued the devices directly to the user’s skin. DuoSkin is a temporary tattoo created with gold leaf. Metallic “Flash” temporary fashion tattoos have become quite popular recently, so this builds on the trend. What the team has done is to use them to create user interfaces for wearable electronic devices.

weeding-gold-leaf-temporary-tattooGenerally speaking, gold leaf is incredibly fragile. In this process to yield the cleanest looking leaf the gold is not actually cut. Instead, the temporary tattoo film and backer are cut on a standard desktop vinyl cutter. The gold leaf is then applied to the entire film surface. The cut film/leaf can then be “weeded” — removing the unwanted portions of film which were isolated from the rest by the cutting process — to complete the temporary tattoo. The team tested this method and found that traces 4.5 mm or more thick were resilient enough to last the entire day on your skin.

The gold leaf tattoos make excellent capacitive touch sensors. The team was able to create sliders, buttons, and even 2 dimensional diamond grids. These controls were used to move a cursor on a computer or phone screen. They were even able to create a wearable NFC tag. The gold leaf is the antenna, and the NFC chip itself is mounted on the temporary tattoo backer.

These devices all look great, but with the exception of the NFC chip, we’re not seeing the electronics driving them. Capacitive touch sensors used as a UI for a phone will have to have a Bluetooth radio and a battery somewhere. We’re that’s all hidden under the arm of the user. You can see what we’re taking about in the video after the break. That said, the tools and materials are ubiquitous and easy to work with. Take a quick read through the white paper (PDF) and you can be making your own version of this today.

Continue reading “Skin Bling: Wearable Electronics from Golden Temporary Tattoos”