Turning the DEFCON Badge Into a Bitcoin Miner

defcon

The DEFCON badge this year was an impressive piece of hardware, complete with mind-bending puzzles, cap sense buttons, LEDs, and of course a Parallax Propeller. [mike] thought a chip as cool as the Propeller should be put to better use than just sitting around until next year so he turned it into a Bitcoin miner, netting him an astonishing 40 hashes per second.

Mining Bitcoins on hardware that doesn’t have much processing power to begin with (at least compared to the FPGAs and ASIC miners commonly used) meant [mike] would have to find some interesting ways to compute the SHA256 hashes that mining requires. He turned to RetroMiner, the Bitcoin miner made for an original Nintendo. Like the NES miner, [mike] is offloading the communication with the Bitcoin network to a host computer, but all of the actual math is handled by a single core on the Propeller.

Saving one core for communication with the host computer, a DEFCON badge could conceivably manage 280 hashes/second, meaning the processing power of all the badges made for DEFCON is about equal to a seven-year-old graphics card.

Hackaday Retro Edition: A 286 on the Internet

retro-roundup

While not an issue now with our 64 bit (more accurately 48- or 52-bit) processors, there was a time when 32 bits of addressing space was impossibly large. For several decades, 4 Gigabytes of memory would be the absolute ceiling, and something only madmen or the protagonist of Pi would have to deal with. This convention began, at least for the Intel/PC world, with the 386. Earlier processors like the 8086 and the 286 were quite capable for their time, but doing anything modern with them, especially getting on the Internet, is a quixotic endeavor beyond comparison.

[Caulser] over on the Vintage Computer Forums has done just that. He recently acquired a Zenith Data Systems 286 system and loaded up what is quickly becoming the litmus test for old computers on the Internet: the Hackaday retro edition

When he first received the system, it was loaded up with a rather generous (for the time) 4MB of RAM. The 20MB hard drive was dead, but with a little fiddling about with the BIOS, [Caulser] was able to get the system working with an old Quantum IDE hard drive.

There’s no Windows or even Linux for this machine, so the system is just running MS DOS 5a, mTCP, Arachne, and the relevant drivers for the NIC (that has RJ45 and BNC connectors). After upgrading the RAM to 8MB, the box performs reasonably well without any pesky ads, and given the websites he visited, he’s not dealing with any overwrought Javascript or CSS, either.

Pics of the system below.


If you have an old computer sitting around, try to load our retro site with it. Take a few pictures, and we’ll put it up in one of our Retro Roundups

[Read more...]

Now Let’s See The World’s Largest Arduino

atomsoft

A few days ago we saw what would have been a killer Kickstarter a few years ago. It was the smallest conceivable ATtiny85 microcontroller board, with resistors, diodes, a USB connector, and eight pins for plugging into a breadboard. It’s a shame this design wasn’t around for the great Arduino Minification of Kickstarter in late 2011; it would have easily netted a few hundred thousand dollars, a TED talk, and a TechCrunch biopic.

[AtomSoftTech] has thrown his gauntlet down and created an even smaller ‘tiny85 board. it measures 0.4in by 0.3in, including the passives, reset switch, and USB connector. To put that in perspective, the PDIP package of the ‘tiny85 measures 0.4 x 0.4. How is [Atom] getting away with this? Cheating, splitting the circuit onto two stacked boards, or knowing the right components, depending on how you look at it.

USB [Atom] is using a few interesting components in this build. The USB connector is a surface mount vertical part, making the USB cord stick out the top of this uC board. The reset button is extremely small as well, sticking out of the interior layer of the PCB sandwich.

[AtomSoft] has the project up on OSH Park ($1.55 for three. How cool is that?), and we assume he’ll be selling the official World’s Smallest Arduino-compatible board at Tindie in time.

How To Reverse Engineer, Featuring the Rigol DS1054Z

frontend For a few years now, the Rigol DS1052E has been the unofficial My First Oscilloscope™. It’s cheap, it’s good enough for most projects, and there have been a number hacks and mods for this very popular scope to give it twice as much bandwidth and other interesting tools. The 1052E is a bit long in the tooth and Rigol has just released the long-awaited update, the DS1054Z. It’s a four-channel scope, has a bigger screen, more bells and whistles, and only costs $50 more than the six-year-old 1052E. Basically, if you’re in the market for a cheap, usable oscilloscope, scratch the ~52E off your list and replace it with the ~54Z.

With four channels of input, [Dave Jones] was wondering how the engineers at Rigol managed to stuff two additional front ends into the scope while still meeting the magic price point of $400. This means it’s time for [Dave] to reverse engineer the 1054Z, and give everyone on the Internet a glimpse at how a real engineer tears apart the worth of other engineers.

The first thing [Dave] does once the board is out of the enclosure is taking a nice, clear, and in-focus picture of both sides of the board. These pictures are edited, turned into a line drawing, and printed out on a transparency sheet. This way, both sides of the board can be viewed at once, allowing for a few dry erase marker to highlight the traces and signals.

Unless your voyage on the sea of reverse engineering takes you to the island of despair and desoldering individual components, you’ll be measuring the values of individual components in circuit. For this, you’ll want a low-voltage ohms function on your meter; if you’re putting too much voltage through a component, you’ll probably turn on some silicon in the circuit, and your measurements will be crap. Luckily, [Dave] shows a way to test if your meter will work for this kind of work; you’ll need another meter.

From there, it’s basically looking at datasheets and drawing a schematic of the circuit; inputs go at the left, outputs at the right, ground is at the bottom, and positive rails are at the top. It’s harder than it sounds – most of [Dave]‘s expertise in this area is just pattern recognition. It’s one thing to reverse engineer a circuit through brute force, but knowing the why and how of how the circuit works makes things much easier.

[Read more...]

What’s Next on the Raspberry Pi Front

piscreenRaspberry Pi founder [Eben Upton] recently sat in an uncomfortable chair in London to discuss all things Pi. Having sold about four million units over the last 2.5 years, he feels the future is bright for his original vision of inspiring and helping kids to learn programming.

[Eben] is quite pleased with the Pi-Top, a B+ based laptop kit that’s pulling in backers left and right while completely unaffiliated with the Pi foundation. The kit includes a 13.3″ HD LCD screen, keyboard, trackpad, and an injection molded case, though you can print your own with the included STL files. Kits start at $249 without a Pi and $285 with a B+ included. Robot and home automation HATs are also available separately or bundled with the Pi-Top kit.

The most exciting news is that the $600,000 spent on DSI connectors for those four million Raspis is about to pay off. [Eben] hopes that an official touchscreen will be available for purchase before the end of 2014 or in early 2015. He showed off a 7″ capacitive touch panel that will attach to a display board stacked on a Pi, effectively turning it into a tablet.

[Eben] said that they will not be making a Model C and instead are working on revision A+. He hopes to make an official announcement in the near future.

Finally, [Eben] discussed the importance of community, which played a large part in the birth and evolution of the Pi. He also spoke of Pi Academy, a sort of professional workshop for teachers in the UK who’ve recently been tasked with teaching computer science as demanded by changes in the mandatory UK school curriculum. He hopes that these 2-day seminars will help educators achieve the high expectations recently laid out for students to achieve by age ten.

Giving Life to an Undead Baby Doll

creepyDoll

If carving a pumpkin this month is too passé for you, take a shot at [Jason Suter's] instructable and build an animatronic legless zombie child that will surely creep out anyone who has a fear of dolls or other vacant-faced toy babies.

Beginning with a sacrificial doll, [Jason] dismembers all of the limbs and head from the torso in order to make room for the robotic upgrades. The servo motors which animate the new wooden dowel bones are mounted to a chassis cut with a CNC machine. [Jason’s] instructions include some nice diagrams demonstrating how the points of articulation at the shoulders and elbows work in conjunction to produce different flavors of crawling and dragging.

FWFSZPYI0LDVY63.LARGEFFU405MI0LDVY54.LARGE

To top it off, the head is attached to its own mounting plate with tendons that rock back and forth in a miserable undead sort-of fashion. As an added nicety, he explains how to install a bluetooth module into the circuitry so he can tweak and upload his example code to the Arduino brain remotely without needing to get his hands near it. There is of course some additional melting, painting, and doll torture required to achieve that rough-up undead look… but that’s all just icing on top of a well executed piece of animatronics.

In his video [Jason] gives us an overview of his zombie’s build and also shows it in action:

[Read more...]

Watch That Windows Update: FTDI Drivers Are Killing Fake Chips

ftdi-explosion

The FTDI FT232 chip is found in thousands of electronic baubles, from Arduinos to test equipment, and more than a few bits of consumer electronics. It’s a simple chip, converting USB to a serial port, but very useful and probably one of the most cloned pieces of silicon on Earth. Thanks to a recent Windows update, all those fake FTDI chips are at risk of being bricked. This isn’t a case where fake FTDI chips won’t work if plugged into a machine running the newest FTDI driver; the latest driver bricks the fake chips, rendering them inoperable with any computer.

Reports of problems with FTDI chips surfaced early this month, with an explanation of the behavior showing up in an EEVblog forum thread. The new driver for these chips from FTDI, delivered through a recent Windows update, reprograms the USB PID to 0, something Windows, Linux, and OS X don’t like. This renders the chip inaccessible from any OS, effectively bricking any device that happens to have one of these fake FTDI serial chips.

Because the FTDI USB to UART chip is so incredibly common,  the market is flooded with clones and counterfeits. it’s very hard to tell the difference between the real and fake versions by looking at the package, but a look at the silicon reveals vast differences. The new driver for the FT232 exploits these differences, reprogramming it so it won’t work with existing drivers. It’s a bold strategy to cut down on silicon counterfeiters on the part of FTDI. A reasonable company would go after the manufacturers of fake chips, not the consumers who are most likely unaware they have a fake chip.

The workaround for this driver update is to download the FT232 config tool from the FTDI website on a WinXP or Linux box, change the PID of the fake chip, and never using the new driver on a modern Windows system. There will surely be an automated tool to fix these chips automatically, but until then, take a good look at what Windows Update is installing – it’s very hard to tell if your devices have a fake FTDI chip by just looking at them.

Follow

Get every new post delivered to your Inbox.

Join 96,656 other followers