Share Your Projects: Imperfectionism

Everyone has a standard for publishing projects, and they can get pretty controversial. We see a lot of people complain about hacks embedded in YouTube videos, social media threads, Discord servers, Facebook posts, IRC channels, different degrees of open-sourcing, licenses, searchability, and monetization. I personally have my own share of frustrations with a number of these factors.

It’s common to believe that hacking as a culture doesn’t thrive until a certain set of conditions is met, and everyone has their own set of conditions in mind. My own dealbreaker, as you might’ve seen, is open-sourcing of code and hardware alike – I think that’s a sufficiently large barrier for hacking being repeatable, and repeatability is a big part of how hacking culture spreads.

This kind of belief is often self-limiting. Many people believe that their code or PCB source file is not a good contribution to hacking culture unless it meets a certain cleanliness or completeness standard. This is understandable, and I do that, too.

Today, I’d like to argue against my own view, and show how imperfect publishing helps build hacking culture despite its imperfections. Let’s talk about open-source in context of 3D printing.

Continue reading “Share Your Projects: Imperfectionism”

DIY Powerwall Blows Clouds, Competition Out Of The Water

Economists have this idea that we live in an efficient market, but it’s hard to fathom that when disposable vapes are equipped with rechargeable lithium cells. Still, just as market economists point out that if you leave a dollar on the sidewalk someone will pick it up, if you leave dollars worth of lithium batteries on the sidewalk, [Chris Doel] will pick them up and build a DIY home battery bank that we really hope won’t burn down his shop.

Testing salvaged batteries.

The Powerwall-like arrangement uses 500 batteries salvaged from disposable vapes. His personal quality control measure  while pulling the cells from the vapes was to skip any that had been discharged past 3 V. On the other hand, we’d be conservative too if we had to live with this thing, solid brick construction or not.

That quality control was accomplished by a clever hack in and of itself: he built a device to blow through the found vapes and see if they lit up. (That starts at 3:20 in the vid.) No light? Not enough voltage. Easy. Even if you’re not building a hoe powerbank, you might take note of that hack if you’re interested in harvesting other people’s deathsticks for lithium cells. The secret ingredient was the pump from a CPAP machine. Actually, it was the only ingredient.)

In another nod to safety, he fuses every battery and the links between the 3D printed OSHA unapproved packs. The juxtoposition between janky build and careful design nods makes this hack delightful, and we really hope [Chris] doesn’t burn down his shed, because like the cut of his jib and hope to see more hacks from this lad. They likely won’t involve nicotine-soaked lithium, however, as the UK is finally banning disposable vapes.

In some ways, that’s a pity, since they’re apparently good for more than just batteries — you can host a website on some of these things. How’s that for market efficiency?

Continue reading “DIY Powerwall Blows Clouds, Competition Out Of The Water”

Japan’s Forgotten Analog HDTV Standard Was Well Ahead Of Its Time

When we talk about HDTV, we’re typically talking about any one of a number of standards from when television made the paradigm switch from analog to digital transmission. At the dawn of the new millenium, high-definition TV was a step-change for the medium, perhaps the biggest leap forward since color transmissions began in the middle of the 20th century.

However, a higher-resolution television format did indeed exist well before the TV world went digital. Over in Japan, television engineers had developed an analog HD format that promised quality far beyond regular old NTSC and PAL transmissions. All this, decades before flat screens and digital TV were ever seen in consumer households!

Continue reading “Japan’s Forgotten Analog HDTV Standard Was Well Ahead Of Its Time”

Countdown To Pi 1 Loss Of Support, Activated

The older Raspberry Pi boards have had a long life, serving faithfully since 2012. Frankly, their continued support is a rarity these days — it’s truly incredible that an up-to-date OS image can still be downloaded for them in 2025. All good things must eventually come to an end though, and perhaps one of the first signs of that moment for the BCM2385 could be evident in Phoronix’s report on Debian dropping support for MIPS64EL & ARMEL architectures. Both are now long in the tooth and other than ARMEL in the Pi, rarely encountered now, so were it not for the little board from Cambridge this might hardly be news. But what does it mean for the older Pi?

It’s first important to remind readers that there’s no need to panic just yet, as the support is going not for the mainstream Debian releases, but the unstable and experimental ones. The mainstream Debian support period for the current releases presumably including the Debian-based Raspberry Pi OS extends until 2030, which tallies well with Raspberry Pi’s own end-of-life date for their earlier boards. But it’s a salutary reminder that that the clock’s ticking, should (like some of us) you be running an older Pi.  You’ve got about five years.

Alec using the arc spraying device

Make Metal Rain With Thermal Spraying

For those of us hackers who have gone down a machining rabbit hole, we all know how annoying it can be to over-machine a part. Thermal spraying, while sounding sci-fi, is a method where you can just spray that metal back on your workpiece. If you don’t care about machining, how about a gun that shoots a shower of sparks just to coat your enemies in a layer of metal? Welcome to the world of thermal spraying, led by the one and only [Alec Steele].

There are three main techniques shown that can be used to coat using metal spools. The first, termed flame spraying, uses a propane flame and compressed air to blast fine drops of molten metal onto your surface. A fuel-heavy mixture allows the metal to remain unoxidized and protect any surface beneath. Perhaps one of the most fun to use is the arc method of thermal spray. Two wires feed together to short a high current circuit; all it takes from there is a little pressured air to create a shower of molten metal. This leaves the last method similar to the first, but uses a powder material rather than the wires used in flame spraying.

As with much crazy tech, the main uses of thermal spraying are somewhat mundane. Coating is applied to prevent oxidation, add material to be re-machined, or improve the mechanical resistance of a part. As expensive as this tech is, we would love to see someone attempt an open-source version to allow all of us at Hackaday to play with. Can’t call it too crazy when we have people making their own X-ray machines.

Continue reading “Make Metal Rain With Thermal Spraying”

Spectravideo Computers Get A Big Upgrade

Spectravideo is not exactly the most well-known microcomputer company, but they were nevertheless somewhat active in the US market from 1981 to 1988. Their computers still have a fanbase of users and modders. Now, as demonstrated by [electricadventures], you can actually upgrade your ancient Spectravideo machine with some modern hardware.

The upgrade in question is the SVI-3×8 PicoExpander from [fitch]. It’s based on a Raspberry Pi Pico 2W, and is built to work with the Spectravideo 318 and 328 machines. If you’re running a 328, it will offer a full 96kB of additional RAM, while if you’re running a 318, it will add 144 kB more RAM and effectively push the device up to 328 spec. It’s also capable of emulating a pair of disk drives or a cassette drive, with saving and loading images possible over Wi-Fi.

It’s worth noting, though, that the PicoExpander pushes the Pico 2W well beyond design limits, overclocking it to 300 MHz (versus the original 150 MHz clock speed). The makers note it is “bleeding edge” hardware and that it may not last as long as the Spectravideo machines themselves.

Design files are available on Github if you want to spin up your own PicoExpander, or you can just order an assembled version. We’ve seen a lot of other neat retrocomputer upgrades built around modern hardware, too. Video after the break.

Continue reading “Spectravideo Computers Get A Big Upgrade”

A Pentium In Your Hand

Handheld computers have become very much part of the hardware hacker scene, as the advent of single board computers long on processor power but short on power consumption has given us the tools we need to build them ourselves. Handheld retrocomputers face something of an uphill struggle though, as many of the components are over-sized, and use a lot of power. [Changliang Li] has taken on the task though, putting an industrial Pentium PC in a rather well-designed SLA printed case.

Aside from the motherboard there’s a VGA screen, a CompactFlash card attached to the IDE interface, and a Logitech trackball. As far as we can see the power comes from a USB-C PD board, and there’s a split mechanical keyboard on the top side. It runs Windows 98, and a selection of peak ’90s games are brought out to demonstrate.

We like this project for its beautiful case and effective use of parts, but we’re curious whether instead of the Pentium board it might have been worth finding a later industrial PC to give it a greater breadth of possibilities, there being few x86 SBCs. Either way it would have blown our minds back in ’98, and we can see it’s a ton of fun today. Take a look at the machine in the video below the break.

Continue reading “A Pentium In Your Hand”