Your robot stand-in has arrived

Meet TIPI, the Telepresence Interface by Pendulum Inversion. TIPI is something of a surrogate, giving physical presence to telecommuters by balancing an LCD screen and camera atop its six foot frame. The user has full control of the robot’s movement, with their own camera image shown on the display so that others interacting with the bot will with whom they are conversing.

A pair of 12.5″ wheels connec to DC motors via a gear box with a 37:1 ratio. These specs are necessary to recover from a sudden 20 degree loss of equilibrium, quite impressive for a bot of this stature. An Orangutan SVP board monitors a two-axis accelerometer and a gyroscope for accurate positioning data. This board automatically keeps balance, while taking user commands from a second control, a Beagle Board. The Beagle Board handles the communications, including sending and receiving the video signals, and delivering incoming position control data to the Orangutan. Separating the two systems guards against a screen-shattering fall by making sure the hardware likely to face slow-down or lockup is physically separate from that responsible for balance.

Check out the video clip after the brake to see some balancing goodness. It shouldn’t be hard to build your own version for much less than the $15k price tag enjoyed by some commercial versions.

Continue reading “Your robot stand-in has arrived”

555 based balancing bot

This post on Reddit by [superangryguy] caught our attention today. He’s put together a video explaining the basics of how to build balancing robots, focusing on a 555 timer based one. He’s got two main versions, the 555 based one and another that is based off of two transistors. He says the 555 based one is much easier to build. This has all come about due to the upcoming 555 timer contest. if you go to the Reddit post you can get schematics for both versions as well as a sneak peak at what he plans on building for the contest. You can see the video after the break.

Continue reading “555 based balancing bot”

Balancing inverted pendulums

The robot above can balance an inverted pendulum. But wait, it gets better. It can balance an inverted pendulum that is articulated in the middle like the one seen above. Wait, wait, wait… it gets even better. It can start with the pendulum hanging below the sliding carriage, flick back and forth to get the two segments swinging, and then come to equilibrium with the pendulum as seen above. Once there, it can recover from a bit of a shove, like some of the big boys. Very impressive, even when compared to two-wheeled balancers. See for yourself after the break.

We don’t have very much information on how this works. We do know that it was a seminar paper from a student at the University of Stuttgart but the rest is pretty much a mystery. Does it use visual processing? What kind of controller is driving this thing? We want to know the details but haven’t yet found a copy of the paper. If you know where we can get our mitts on it please leave a comment below.

Continue reading “Balancing inverted pendulums”

Self-balancing unicycle 2.0

Focus Designs has a new version of their self-balancing unicycle for sale. This improves upon their original design in several ways. The battery pack has moved to LiFePO4, which is becoming more common in electric transportation. There’s also regenerative braking and fall protection which kills the motor when you fall off.

We’ve embedded their marketing video after the break. Our favorite part is the shot seen above: a guy on the unicycle cruising along next to a woman who is running. There’s nothing like sitting on your bum while some else exercises.

At any rate, from what we see in the video they’ve turned out a solid product.

Continue reading “Self-balancing unicycle 2.0″

Electric motorcycle rocks one wheel

We had to call it an electric motorcycle in the title because electric unicycle just sounds lame. But the video after the break shows you that this prototype is anything but lame. It takes minimalism to the extreme when you’re talking about powered transportation. The self-balancer is reminiscent of a Segway but the rider sits astride one wheel rather than the standing form-factor that [the Woz] loves so much for gaming. Looks like Ryno Motors is trying to gather capital to put these into production. We’re not going to hold our breath until we see them in the wild, but we’d be surprised if they don’t pop up on the big screen at some point in the near future.

Continue reading “Electric motorcycle rocks one wheel”

Try as you might, Scooty won’t fall over

Scooty is a balancing robot based around a PIC32. The project is the first iteration in a long road toward a ridable version. The video after the break shows some incredible promise. Scooty is pitted against a large rubber ball. The two roll into each other but Scooty maintains balance thanks to that powerful processor, anĀ inertialĀ sensor, and a range finder.

Scooty versus a ball isn’t really fair to the ball. We’d like to see Scooty versus the ball balancing robot.

Continue reading “Try as you might, Scooty won’t fall over”

well engineered diy Segway

diy-segway

[Mark] wanted a Segway but why buy something if you can have more fun building it? His end product is an amazing homemade version of the self-balancing transportation package. We’ve seen several projects that include auto-balance, but this one is large enough to ride on and has a bit of an advantage in the design. The motors, batteries, and other components are mounted below the wheel hubs and are weight balanced. This means that the device wants to find balance naturally, even when the electronics are switched off.

The frame was modeled in CAD and then welded together. For propulsion [Mark] has installed two 750 Watt motors which will use sprockets and chains to turn the wheels. The machine balances based on data from both a gyroscope and an accelerometer, with the entire packaged tied together using an Arduino.

[Mark’s] build log is well laid out and details each part of the build with a different post. His two most recent entries include video of the unit balancing and of him riding the 95% completed project. A big thanks to [Mark] for taking the time to document this so that we can share in the excitement of a well-executed project.