Almost building an engine from hardware store parts

engine

You can build a surprising amount of stuff from parts you can pick up at a hardware store. Sometimes, though, getting a project built from sections of pipe is very, very difficult. That’s the case with [Lou]’s hardware store engine: despite an inordinate amount of cleverness, he just can’t seem to get an engine made from pipe fitting to work and is now asking for some ideas from other ingenious makers.

The engine uses regular oxygen and propane tanks you can pick up at Home Depot with torch heads soldered onto half inch pipe. The fuel and oxygen are mixed in a T fitting until a grill igniter sets the gas mixture ablaze pushing a cylinder down the length of a copper pipe. The cylinder is attached to an aluminum flywheel that also controls the opening and closing of the oxygen and propane valves as well as switching the grill igniter on and off.

Right now, [Lou] can get the engine running, but only for one stroke of the cylinder. He’s having a bit of a problem turning this into a working motor. If you’ve got any idea on how to make [Lou]’s engine work, drop a line in the comments. We’ll throw our two cents in and say he needs a valve on the exhaust, but other suggestions are always welcome.

Teens pulled over while driving their wooden roadster

From this view we would think the handmade wooden roadster (translated) was street legal. But it’s missing a few items that are required to take it out on the highway. The teenagers that built it were pulled over the other night (translated) and cited for driving without a speedometer or side indicator lights.

The image above shows the mark II of their design. Sadly they crashed the first version, which gave them a chance to overhaul the entire design. Now they have a proper frame which was welded from steel square tube. It’s got an impressive rack and pinion steering system and shock absorbing suspension in the front and rear. A dirt bike engine mounted behind the seats drives the rear wheels via a chain. They’ve used an Arduino to add turn signals, and have headlights for night driving.

[Gerrit] sent in the tip on this one and he figures that with an Arduino already being used in the vehicle it should be a quick fix to add a speedometer and get back on the road.

How to convert an internal combustion engine to run from steam power

We had no idea that what’s needed to convert an internal combustion engine to steam power is actually rather trivial. [David Nash] shows us how it’s done by performing the alterations on the engine of a string trimmer. These are the tools used to cut down vegetation around obstacles in your yard. The source of the engine doesn’t really matter as long as it’s a 2-cycle motor.

This engine had one spark plug which is threaded into the top of the block. [David] removed this and attached his replacement hardware. For now he’s using compressed air for development, but will connected the final version to a boiler.

There are only a couple of important parts between the engine and the boiler. There’s an in-line oil reservoir to help combat the corrosive nature of the steam. There is also a check valve. In the video after the break [David] shows the hunk of a ball-point pen that he uses to actuate the check valve. It’s really just a spacer that the piston pushes up to open the valve. This will be replaced with a metal rod in the final version.

Continue reading “How to convert an internal combustion engine to run from steam power”

Firing rocket engines in the wrong direction — this is only a test

LVL1 has a new rocketeering group. This rocket engine testing platform is the first project to come out of the fledgling club. The purpose of the tool is to gather empirical data from model rocket engines. Having reliable numbers on thrust over time will allow the team to get their designs right before the physical build even starts.

The rig uses a pine base, with a PVC frame, threaded bolts, and a PVC cuff for mounting the engine in place. It is set to fire up in the air, directing the thrust down onto a scale. The flex sensor in the scale is monitored by an Arduino, and should be able to hold up to the 5000 pounds grams of thrust max which this type of engines can put out. The data is pushed via USB to a laptop computer where it is stored in a spreadsheet.

Calibration would be an issue here. But as long as they’re always using the same strain sensor the numbers will be accurate enough relative to each other.

Melting beer cans and building engines

What do you do if you’ve got a fully equipped machine shop and you’re tired of taking old beer cans to the recycler? If you’re like [Brock], you’ll probably end up melting those cans down to build an engine.

After gathering 50 pounds of beer cans and melting them down into ingots of various sizes, [Brock] and company had a lot of aluminum and nothing to build. Eventually, someone got the idea to build an internal combustion engine out of these beer can ingots.

So far, the beer can engine crew has built two engines from these beer can ingots. The four-stroke engine started off as a 5-inch aluminum cube, bored and milled into something resembling an engine block. When [Brock] and the beer can engine team completed their four-stroke masterpiece, they had a water-cooled engine displacing 150cc with a single 2″ bore piston. The two-stroke engine is a much simpler affair with a 1 inch bore displacing 19cc.

Even though there’s no information at all covering the pottery kiln foundry used to melt the beer cans into ingots, it’s an amazing piece of work building and engine from the ground up.

You can check out a few videos of both engines after the break.

Continue reading “Melting beer cans and building engines”

Milling a motorcycle engine

Real motorcycle enthusiasts design and mill their own engines. Well, perhaps that’s an overstatement. Certainly it takes to more obsession than enthusiasm to go to these lengths. But this gentleman’s modifications started out simple enough, and managed to make it to the most extreme of hardware fabrications.

The used bike came with a modified camshaft that seemed like a botched job. As he got further into tuning up engine performance the prospect of just replacing the entire thing with his own design started to grow. Using a manually operated milling machine he cut his own molds for the new cylinder head out of wood and sent them off to be forged out of aluminum. They come back in rough shape but he just “filed the cast without mercy” and machined the tolerances to his specifications. Apparently the first test ride had him a bit nervous — he also milled his own brakes for the bike. But after a few times around the block he gained confidence with his work.

[Thanks Carlos]

Motorcycle engine hack like having an old F1 between your legs

The difficulty of rolling a 16-cylinder engine into a motorcycle really boggles the mind. But that’s exactly what [Andreas Georgeades] is doing in his garage. It’s two straight-8 engines sandwiched on top of one another with a custom crankcase connecting them. And get this, those custom parts are being milled by hand, using time-tested techniques rather than modern computer assistance.

So, where does the complexity come in? Well first of all you’ve got to solve all of the problems that go along with combining two engines. It sounds like this isn’t a new concept, as older generations of Formula 1 engines used the technique. But we still think it’s the pinnacle of hardcore when it’s an enthusiast undertaking the challenge. Then there’s the issue of weight. The engine is bulky, but needs to balance in the frame. And you still must find a way for the rider to sit on the thing (even the most bow-legged of people won’t be able to get their hips around the thing).

Seems like something out of a Mario Kart game that should have no chance of being roadworthy. But we’re sure [Andreas] is going to prove us wrong.

[Thanks Th3BadWolf]