This week on HANDMADE.hackaday

Snap 2013-06-09 at 09.13.04

This week on HANDMADE.hackaday we’ve seen a pretty good variety of skills. is growing quickly. Keep sending in those good tips! We have some videos of our own planned as well, keep an eye out for those!

1,200 hours of work results in the smallest v12 engine

[José Manuel Hermo Barreiro] has spent many many hours crafting these tiny engines from hand. Every single piece is custom made specifically for the engine it is going onto. He has created aircraft engines, car engines, and marine engines that all actually run and are the smallest of their kind in the world.

At one point in this video he stands in a room with several engines lined up, all running smoothly and considers that there are possibly over 15,000 hours of work right there in front of him.

Here’s a video specifically about the 12 cylinder construction.

[Thanks Staskazz]


Second grade science project: a steam engine


If you’re looking for a way to let the kids get hand-ons with science this is a perfect example of how to do it. [Erich] wanted to help out with his 7-year-old’s science project. They decided to build a working model of a steam engine but couldn’t find online instructions appropriate for the age group. So the two of them not only pulled off the build, but then they wrote a guide for others to follow. The thing about it is, you really have to understand a concept to teach it to someone else. So we think the write-up is equally important to having actually done the experiment.

Steam can scald you if you’re not careful. But you don’t really need steam to explore the concepts of a steam engine. The main reason to use steam is that it’s a fairly rudimentary way to build pressure which can be converted to motion. For this demonstration the blue balloon provides that pressure. It’s feeding a reservoir that connects to the valve built out of straws. A plastic piston inside pushes against the crank shaft, spinning the cardboard wheel on the left. When the piston travels past the valve opening it releases the air pressure until the machine makes a revolution and is in place for the next push. This is well demonstrated in the clip after the break.

Continue reading “Second grade science project: a steam engine”

Almost building an engine from hardware store parts


You can build a surprising amount of stuff from parts you can pick up at a hardware store. Sometimes, though, getting a project built from sections of pipe is very, very difficult. That’s the case with [Lou]’s hardware store engine: despite an inordinate amount of cleverness, he just can’t seem to get an engine made from pipe fitting to work and is now asking for some ideas from other ingenious makers.

The engine uses regular oxygen and propane tanks you can pick up at Home Depot with torch heads soldered onto half inch pipe. The fuel and oxygen are mixed in a T fitting until a grill igniter sets the gas mixture ablaze pushing a cylinder down the length of a copper pipe. The cylinder is attached to an aluminum flywheel that also controls the opening and closing of the oxygen and propane valves as well as switching the grill igniter on and off.

Right now, [Lou] can get the engine running, but only for one stroke of the cylinder. He’s having a bit of a problem turning this into a working motor. If you’ve got any idea on how to make [Lou]’s engine work, drop a line in the comments. We’ll throw our two cents in and say he needs a valve on the exhaust, but other suggestions are always welcome.

Teens pulled over while driving their wooden roadster

From this view we would think the handmade wooden roadster (translated) was street legal. But it’s missing a few items that are required to take it out on the highway. The teenagers that built it were pulled over the other night (translated) and cited for driving without a speedometer or side indicator lights.

The image above shows the mark II of their design. Sadly they crashed the first version, which gave them a chance to overhaul the entire design. Now they have a proper frame which was welded from steel square tube. It’s got an impressive rack and pinion steering system and shock absorbing suspension in the front and rear. A dirt bike engine mounted behind the seats drives the rear wheels via a chain. They’ve used an Arduino to add turn signals, and have headlights for night driving.

[Gerrit] sent in the tip on this one and he figures that with an Arduino already being used in the vehicle it should be a quick fix to add a speedometer and get back on the road.

How to convert an internal combustion engine to run from steam power

We had no idea that what’s needed to convert an internal combustion engine to steam power is actually rather trivial. [David Nash] shows us how it’s done by performing the alterations on the engine of a string trimmer. These are the tools used to cut down vegetation around obstacles in your yard. The source of the engine doesn’t really matter as long as it’s a 2-cycle motor.

This engine had one spark plug which is threaded into the top of the block. [David] removed this and attached his replacement hardware. For now he’s using compressed air for development, but will connected the final version to a boiler.

There are only a couple of important parts between the engine and the boiler. There’s an in-line oil reservoir to help combat the corrosive nature of the steam. There is also a check valve. In the video after the break [David] shows the hunk of a ball-point pen that he uses to actuate the check valve. It’s really just a spacer that the piston pushes up to open the valve. This will be replaced with a metal rod in the final version.

Continue reading “How to convert an internal combustion engine to run from steam power”

Firing rocket engines in the wrong direction — this is only a test

LVL1 has a new rocketeering group. This rocket engine testing platform is the first project to come out of the fledgling club. The purpose of the tool is to gather empirical data from model rocket engines. Having reliable numbers on thrust over time will allow the team to get their designs right before the physical build even starts.

The rig uses a pine base, with a PVC frame, threaded bolts, and a PVC cuff for mounting the engine in place. It is set to fire up in the air, directing the thrust down onto a scale. The flex sensor in the scale is monitored by an Arduino, and should be able to hold up to the 5000 pounds grams of thrust max which this type of engines can put out. The data is pushed via USB to a laptop computer where it is stored in a spreadsheet.

Calibration would be an issue here. But as long as they’re always using the same strain sensor the numbers will be accurate enough relative to each other.