Deleting The Camshafts From A Miata Engine

The idea of camless automotive engines has been around for a while but so far has been limited to prototypes and hypercars. [Wesley Kagan] has been working on a DIY version for a while, and successfully converted a Mazda Miata to a camless valve system. See the videos after the break.

There have been many R&D projects by car manufacturers to eliminate camshafts in order to achieve independent valve timing, but the technology has only seen commercial use on Koenigsegg hypercars. [Wesley] started this adventure on a cheap single cylinder Harbor Freight engine, and proved the basic concept, so he decided to move up to an actual car. He first sourced a junkyard engine head to convert, and use as a drop-in replacement for the head on the complete project car. An off-the-shelf double-acting pneumatic cylinder is mounted over each valve and connected to the valve stem with a custom adaptor. The double-acting cylinder allows the valve to be both opened and closed with air pressure, but [Wesley] still added the light-weight return spring to keep the valve closed if there is any problem with the pneumatic system.

The controller is an Arduino, and it receives a timing signal from a factory crankshaft and operates the pneumatic solenoid valves via MOSFETs. After mounting the new head and control box into the Miata, it took a couple of days of tuning to get the engine running smoothly. Initial tests were done using the compressor in his garage, but this was replaced with a small compressor and air tank mounted in the Miata’s boot for the driving tests.

Although the pneumatic system works well for short test drives, the compressor is quite noisy and adds a couple of points of failure. [Wesley] is also working on a solenoid actuated system, which would require a lot more current from the battery and alternator, but he believes it’s a better long-term solution compared to compressed air. However, he is still struggling to find solenoids with the required specifications. Continue reading “Deleting The Camshafts From A Miata Engine”

Scrappy: Drag Racing Bush Plane

We like to feature hacks that are affordable and accessible to the average person, but from time to time it’s fun to dream about the projects we’ll tackle when we’re all grown up and stinking rich. [Mike Patey] appears to fall rather comfortably in the latter category, but thankfully he hasn’t lost his “excited kid with big plans” spirit. A talented and experienced experimental aircraft builder, he’s currently working on Scrappy, a small bush plane built to be a short take-off and landing drag racer.

Scrappy started life as a Carbon Cub, a modernized kit version of the venerable Piper Super Cub. The only thing left of the original plane is a part of the fuselage frame, with almost everything else being custom. The engine is a 780 cubic inch (13 liter) horizontally opposed 8-cylinder, scavenged from one of [Mike]’s racing planes, and fitting it required extensive structural changes to the fuselage. The paddle-like propeller was intended for an airboat, and is designed for high thrust at low speeds. The skin of the aircraft is all carbon fiber, and the suspension almost looks like it’s borrowed from an off-road racing truck. [Mike] also added (and test fired) a ballistic recovery parachute. The cockpit instruments are also over-the-top for an aircraft like this, with seven Garmin multi-function displays.

Scrappy is still missing its wings, which will also be heavily modified. From the oil-cooling system to the door latch and gust-lock for the stick, everything was designed and made by [Mike]. We’re enjoying the in-depth build videos that show how he tackles all the little challenges that pop-up in such an ambitious project.

[Mike] made a name for himself with his previous monster bush plane Draco, which was sadly destroyed during an ill-considered take-off last year. Fortunately nobody was harmed in the incident, and Draco became a part donor for Scrappy. If budget planes are more your style, check out [Peter Sripol]’s latest electric microlight.

Continue reading “Scrappy: Drag Racing Bush Plane”

Hypercar Valve Technology On A Harbour Freight Engine

The inlet and exhaust valve timing of a piston engine plays a large role in engine performance. Many modern automotive engines have some sort of variable valve timing, but the valves are still mechanically coupled together and to the crankshaft. This means that there is always a degree of performance compromise for various operating conditions. [Wesley Kagan] took inspiration from Koenigsegg’s camless Freevalve technology, and converted a Harbour Freight engine to camless technology for individual valve control.

By eliminating the traditional camshaft and giving each valve its actuator, it is possible to tune valve timing for any specific operating condition or even for each cylinder. A cheap single-cylinder engine is a perfect testbed for the garage hacker. [Wesley] removed the rocker arms and pushrods, and replaced the stock rocker cover with a 3D printed rocker cover which contains two small pneumatic pistons that push against the spring-loaded valve stems. These pistons are controlled by high-speed pneumatic solenoid valves. A reference timing signal is still required from the crankshaft, so [Wesley] built a timing system with a 3D printed timing wheel containing a bunch of embedded magnets and being sensed by a stationary Hall effect sensor. An Arduino is used to read the timing wheel position and output the control signals to the solenoid valves. With a rough timing program he was able to get the engine running, although it wouldn’t accelerate.

In the second video after the break, he makes a digital copy of the engine’s existing camshaft. Using two potentiometers in a 3D printed bracket, he measured push rod motion for a complete engine cycle. He still plans to add position sensing for each of the valves, and after a bit more work on the single-cylinder motor he plans to convert a full-size car, which we are looking forward to.

People have been tinkering with cars in their garage for as long as cars have existed. [Lewin Day] has been doing a series on how to get into tinkering with cars yourself. With all the electronics in modern automobiles, messing around with their software has become a growing part of this age-old pastime. Continue reading “Hypercar Valve Technology On A Harbour Freight Engine”

3D Printed Engine Chugs Away On Balloon Power

So often, 3D printer owners buy their machines with the promise of freeing themselves from the shackles of commercial manufactured items, and making all sorts of wonderful and useful things to improve their lives. Then they proceed to print a menagerie of good luck cats and toy elephants, that little tugboat, and a host of other pretty but ultimately useless items in garishly colored filament.

Perhaps this is an unfair assessment, but if you have the sneaking feeling that it might just describe you then could we point you at something that while it still has little use is at least interesting to play with. [Gzumwalt]’s single cylinder air engine is as its name suggests, a piston engine that runs on compressed air. You don’t need a shop compressor though, your lungs or an inflated balloon will suffice.

It’s a simple enough design, but it does incorporate two connecting rods, one of which drives a sliding valve. All the files are available for download, and there is a video we’ve placed below the break showing it chugging away nicely from a balloon. It might not be the most useful of engines and it may not bring you good luck, but it beats a plastic menagerie in the interest stakes.

Continue reading “3D Printed Engine Chugs Away On Balloon Power”