Building Optical Flex Sensors

[Joel] dug up this hack that he pulled off over ten years ago. It’s inspired by the Nintendo PowerGlove, and uses flex sensors to react to movements of your fingers. The interesting thing is, he built these optical flex sensors himself.

He likes to say that this is a ghetto fiber-optic setup. The inlaid diagram above gives you an idea of how the sensors work. An IR LED and infrared diode are positioned at either end of a piece of clear aquarium tubing. When the tube is flexed, the amount of light that makes it to the diode is diminished, a change that can be measured by a microcontroller. [Joel] found that he could increase the resolution of the sensor by adding something to the center of the tube, blocking the light when not straight. In this case he used pieces of scrap wire. The outside of the sensor was also wrapped in shrink tubing to keep ambient light from interfering with measurements.

He uses a trimpot to tune the sensors but we wonder how hard it would be to add a calibration algorithm to the firmware?

Electric Mountain Board With Glove Control

Last summer, we saw [Andres Guzman]’s electric mountain board tearing around the University of Illinois campus. He’s back again, only this time the board isn’t controlled with a PlayStation controller. [Andres] built a wireless glove to control his mountain board.

An Arduino and power supply is mounted to the glove. A 2.4GHz transceiver serves as the comm link between the glove and board. The speed control is handled by this flex sensor from Sparkfun. With the flex sensor held between the middle and ring fingers, all [Andres] needs to do to apply power is slightly bend his fingers.

There’s also a number of safety features built into the board. To enable power to the boards motor, there’s a dead man switch on the glove underneath the thumb. If [Andres] were to take a nasty spill, he would release the switch and the board would come to a stop. [Andres] also made sure the board would shut down if the wireless link was interrupted. The build seems pretty safe, even if he is tearing around his campus in the video below.

Continue reading “Electric Mountain Board With Glove Control”

SudoGlove Gets A Big Software Upgrade

[Jeremy Blum] recently finished writing a couple of software packages for his SudoGlove system that turns it into a music controller with a lot of features. We’ve seen the hardware in a previous post and as a goal for this iteration he decided not to alter the hardware or the firmware controlling it whatsoever–making this a PC-side software only hack. It’s nice to see improvement on the original ideas as we feel most of the glove-based projects we’ve covered end up getting thrown in the junk box after the developer’s interest wanes.

After the break you can see and hear a demonstration of the complete system. The front end of application shown was written using Processing and includes a slew of user configurations for each sensor on the glove itself. Under the hood [Jeremy] built on the PureData framework in order to really unlock the potential for translating physical movement into synthesized sound. There is also a visual feedback application which will help you practice your movements, important if you’re giving live performances where each finger is a different instrument. Everything for this project, both hardware and software, has been released under a CC license so check out [Jeremy’s] site if you’re interested in building on part or all of the good work he’s done.

Update: [Jeremy] wrote in with a bit of a correction for our synopsis. The application shown in the video is written entirely in PureData and the visual debugger was written with Processing. The two are standalone packages that don’t depend on each other. He also sent us a link to download the code packages.

Continue reading “SudoGlove Gets A Big Software Upgrade”

From Sign Language To Spoken Language

As part of a senior design project for a biomedical engineering class [Kendall Lowrey] worked in a team to develop a device that translates American Sign Language into spoken English. Wanting to eclipse glove-based devices that came before them, the team set out to move away from strictly spelling words, to combining sign with common gesture. The project is based around an Arduino Mega and is limited to the alphabet and about ten words because of the initial programming space restraints. When the five flex sensors and three accelerometer values register an at-rest state for two seconds the device takes a reading and looks up the most likely word or letter in a table. It then outputs that to a voicebox shield to translate the words or letters into phonetic sounds.

More Glove-based Interfaces

You may remember seeing the golf glove air guitar hack last month. Here’s two more uses for gloves with sensors on them.

On the left is a glove interface with flex sensors on each digit as well as an accelerometer. The VEX module reads the sensors to detect sign language as a command set. A shake of the hand is picked up by an accelerometer to delineate between different command sets. See it controlling a little robot after the break. This comes from [Amnon Demri] who was also involved in the EMG prosthesis.

Straight out of Cornell we have the SudoGlove, seen on the right. [Jeremy Blum] and his fellow engineering students bring together a mess of different sensors, sourcing an Arduino and a XBee module to control a small RC car with added lights and a siren. There’s embedded video after the break. You may want to jump past the music video for the description that starts at about 3:52.

Continue reading “More Glove-based Interfaces”

The Wii Golf Glove

[Shu Uesugi] is filling a controller void that Nintendo has yet to address. He picked up a golf glove from Target and incorporated it into an air guitar interface. Give the video after the break a chance, you’ll start to see the full potential of this build about three and a half minutes into it. Using an Arduino, a Wii nun-chuck, and his flex-senor adorned glove [Shu] can play individual notes, strum cords, and play around with sound effects such as distortion.

So come on Nintendo, the Power Glove was one of your greatest ideas, where’s our 21st century version? I guess we’ll just have to make our own like [Shu] did. Perhaps we’ll even build our flex sensors from scratch.

Continue reading “The Wii Golf Glove”