Heathkit’s New RF Meter: Who is it for?

Electronic hackers and ham radio operators of a certain age have a soft spot for the Heathkit brand. Maybe that’s why we had a rush of nostalgia when we saw the Heathkit site had a new product. You may recall that Heathkit had gone the way of the dodo until a few years ago when the brand started to resurface. Their latest kit is a precision RF meter which is available on preorder.

Before there were websites and hacker spaces and all the modern push to “do it yourself,” Heathkit was teaching people electronics through kit building. Sure, they were known for ham radio and test equipment, but many people built stereos (hi-fi), TVs, radio control gear, computers, and even robots. All with manuals that are hard to imagine if you haven’t seen one. They were world-class.

Continue reading “Heathkit’s New RF Meter: Who is it for?”

Long Range Wireless Internet

While most of you reading this have broadband in your home, there are still vast areas with little access to the Internet. Ham radio operator [emmynet] found himself in just such a situation recently, and needed to get a wireless connection over 1 km from his home. WiFi wouldn’t get the job done, so he turned to a 433 MHz serial link instead. (Alternate link)

[emmynet] used an inexpensive telemetry kit that operates in a frequency that travels long distances much more easily than WiFi can travel. The key here isn’t in the hardware, however, but in the software. He went old-school, implemending peer-to-peer TCP/IP connection using SLIP — serial line Internet protocol. All of the commands to set up the link are available on his project page. With higher gain antennas than came with the telemetry kit, a range much greater than 1 km could be achieved as well.

[Editor’s note: This is how we all got Internet, over phone lines, back in the early Nineties. Also, you kids get off my lawn! But also, seriously, SLIP is a good tool to have in your toolbox, especially for low-power devices where WiFi would burn up your batteries.]

While it didn’t suit [emmynet]’s needs, it is possible to achieve extremely long range with WiFi itself. However this generally requires directional antennas with very high gain and might not be as reliable as a lower-frequency connection. On the other hand, a WiFi link will (in theory) get a greater throughput, so it all depends on what your needs are. Also, be aware that using these frequencies outside of their intended use might require an amateur radio license.

Continue reading “Long Range Wireless Internet”

Vintage Transistor powers QRP Transmitter

[Pete Juliano, N6QW] built a 20 M QRP CW transmitter using just a handful of parts. That in itself will not raise any eyebrows, until you find that he built it using one of the very first RF transistors manufactured all the way back in 1955. That’s from before the time most of us were born and not many years after the invention of the transistor in late 1947.

QRP in HAM-speak technically stands for a request to “reduce power” or an offer of “should I reduce power” when appended with a question mark. A QRP transmitter is designed to transmit at really low powers. The accepted upper power limit for QRP transmitters is 5 W, at least for modes like CW using FM or AM modulation. [Pete]’s interest was piqued when he read about a 10 mW 10 M QRP transmitter design in a vintage Radio magazine from the late ’50’s and decided to replicate it. We aren’t sure, but it appears he had a Philco SB-100 RF transistor lying around in his parts bin. The SB-100 was one of the first surface-barrier transistors and could output 10 mW at frequencies up to 30MHz.

[Pete]’s rig was originally putting out 0.4 mW with a 3 V supply, and oscillating at 14.060 MHz in the 20 M band. The design appears to be a simple Colpitts oscillator with just a few parts assembled in dead-bug style on a piece of copper clad laminate. After adding an output transformer, he managed to increase the power output to about 25 mW. Check out [Pete N6QW] sending out a CQ shout out from his QRP transmitter in the video after the break.

If this gets you interested in Amateur Radio, but you are mic-shy, then [Dan Maloney] has some options for you in Shut Up and Say Something: Amateur Radio Digital Modes.

SBF image via Historianbuff CC-BY-SA 3.0, Public Domain
[via Dangerous Prototypes]

Continue reading “Vintage Transistor powers QRP Transmitter”

Shut Up and Say Something: Amateur Radio Digital Modes

In a recent article, I lamented my distaste for carrying on the classic amateur radio conversation — calling CQ, having someone from far away or around the block call back, exchange call signs and signal reports and perhaps a few pleasantries. I think the idle chit-chat is a big turn-off to a lot of folks who would otherwise be interested in the World’s Greatest Hobby™, but thankfully there are plenty of ways for the mic-shy to get on the air. So as a public service I’d like to go over some of the many digital modes amateur radio offers as a way to avoid talking while still communicating.

Continue reading “Shut Up and Say Something: Amateur Radio Digital Modes”

[Ashhar Farhan]’s done it again!

If you are a regular follower of these pages as well as a radio amateur, you may well have heard of [Ashhar Farhan, VU2ESE]. He is the designer of the BitX, a simple single-sideband transceiver that could be built for a very small outlay taking many of its components from a well-stocked junk box.

In the years since the BitX’s debut there have been many enhancements and refinements to the original, and it has become something of a standard. But it’s always been a single-band rig, never competing with expensive commercial boxes that cover the whole of the available allocations.

With his latest design, he’s changed all that. The uBITX (Micro-BITX when spoken aloud), is an SSB and CW transceiver that covers all of the HF amateur bands, and like the original is designed for the home constructor on a budget. It shows its heritage in the use of bi-directional amplifiers, but diverges from the original with a 45 MHz first IF and an Arduino/SI5351 clock generator in the place of a VFO. It looks to be an excellent design in the spirit of the original, and we can’t wait to see them in the wild.

He’s put up a YouTube video which we’ve placed below the break. His write-up is extensive and fascinating, but it is his closing remarks which sum up the project and the reason why you should build one. We don’t often reproduce entire blocks of text, but this one says it so well:

As a fresh radio amateur in the 80s, one looked at the complex multiband radios of the day with awe. I remember seeing the Atlas 210x, the Icom 720 and Signal One radios in various friends’ shacks. It was entirely out of one’s realm to imagine building such a general coverage transceiver in the home lab.

Devices are now available readily across the globe through online stores, manufacturers are more forthcoming with their data. Most importantly, online communities like the EMRFD’s Yahoo group, the BITX20’s groups.io community etc have placed the tribal knowledge within the grasp of far flung builders like I am.

One knows that it was just a matter of breaking down everything into amplifiers, filters, mixers and oscillators, but that is just theory. The practice of bringing a radio to life is a perpetual ambition. The first signal that the sputters through ether, past your mess of wires into your ears and the first signal that leaps out into the space from your hand is stuff of subliminal beauty that is the rare preserve of the homebrewer alone.

At a recent eyeball meet, our friend [Dev(VU2DEV)] the famous homebrewer said “Now is the best time to be a homebrewer”. I couldn’t disagree.

If you build a uBITX, please share it with us!

Continue reading “[Ashhar Farhan]’s done it again!”

Move Over Baofeng, Xiaomi Want To Steal Your Thunder

To a radio amateur who received their licence decades ago there is a slightly surreal nature to today’s handheld radios. A handheld radio should cost a few hundred dollars, or such was the situation until the arrival of very cheap Chinese radios in the last few years.

The $20 Baofeng or similar dual-bander has become a staple of amateur radio. They’re so cheap, you just buy one because you can, you may rarely use it but for $20 it doesn’t matter. Most radio amateurs will have one lying around, and many newly licensed amateurs will make their first contacts on one. They’re not even the cheapest option either, if you don’t mind the absence of an LCD being limited to UHF only, then the going rate drops to about $10.

The Baofengs and their ilk are great radios for the price, but they’re not great radios. The transmitter side can radiate a few too many harmonics, and the receivers aren’t the narrowest bandwidth or the sharpest of hearing. Perhaps some competition in the market will cause an upping of the ante, and that looks to be coming from Xiaomi, the Chinese smartphone manufacturer. Their Mijia dual-band walkie-talkie product aims straight for the Baofeng’s jugular at only $35, and comes in a much sleeker and more contemporary package as you might expect from a company with a consumer mobile phone heritage. Many radio amateurs are not known for being dedicated followers of fashion, but for some operators the sleek casing of the Mijia will be a lot more convenient than the slightly more chunky Baofeng.

This class of radio offers more to the hardware hacker than just an off-the-shelf radio product, at only a few tens of dollars they become almost a throwaway development system for the radio hacker. We’ve seen interesting things done with the Baofengs, and we look forward to seeing inside the Xiaomi.

We brought you a look at the spurious emissions of this class of radio last year, and an interesting project with a Baofeng using GNU Radio in a slightly different sense to its usual SDR function.

[via Southgate ARC]

Antenna Analyzer is a Lab in a Box

There was a time when the measure of a transmitting radio antenna was having it light an incandescent bulb. A step up was a classic SWR/Power meter that showed you forward and reflected power. Over the years, a few other instruments have tried to provide a deeper look into antenna performance. However, the modern champion is the antenna analyzer which is a way of measuring vector impedance.

[Captain Science] did a review of an inexpensive N1201SA analyzer. This device is well under $200 from the usual Chinese sellers. The only thing a bit odd is the frequency range which is 140 MHz to 2700 MHz. For some extra money (about $80 or $100 more) you can drop the low-end frequency to just under 35 MHz.

Continue reading “Antenna Analyzer is a Lab in a Box”