Bright Idea for a Name Tag

Looking for a quick DIY project to separate yourself from the crowd at your next business function or maker expo? Take a leaf out of [Pete Prodoehl’s] book and make your own name tag complete with blinking LED!

Minimalist, yet flashy (sorry!), this quick project can be completed inside a few hours with few resources, and is a great way to display your DIY handiwork. Continue reading “Bright Idea for a Name Tag”

Life-Size Vu Meter Gets the Party Started

There’s nothing better than making a giant version of one of your hacks. That is, other than making it giant and interactive. That’s just what [Est] has done with his interactive VU meter that lights up the party.

The giant VU meter boasts a series of IR detectors that change the colors and modes of the meter based on where the user places their hands. The sensors measure how much light is reflected back to them, which essentially function as a cheap range finder. The normal operation of the meter and the new interactivity is controlled by a PIC16F883 and all of the parts were built using a home-made CNC router. There are two addressable RGB LEDs for each level and in the base there are four 3 W RGB LEDS. At 25 levels, this is an impressive amount of light.

[Est]’s smaller version of the VU meter has been featured here before, if you’re looking to enhance your music-listening or party-going experiences with something a little less intimidating. We’ve also seen VU meters built directly into the speakers and also into prom dresses.

FPGA Powers Blazingly Fast LED Matrix Audio Visualizer

[Sam Miller], [Sahil Gupta], and [Mashrur Mohiuddin] worked together on a very fast LED matrix display for their final project in ECE 5760 at Cornell University.

Real time!
Real time!

They started, as any good engineering students, by finding a way to make their lives easier. [Sam] had built a 32×32 LED matrix for another class. So, they made three more and ended up with a larger and more impressive 64×64 LED display.

They claim their motivation was the love of music, but we have a suspicion that the true reason was the love all EEs share for unnaturally bright LEDs; just look at any appliance at night and try not be blinded.

The brains of the display is an Altera DE2-115 FPGA board. The code is all pure Verilog. The FFT and LED control are implemented in hardware on the FPGA; none of that Altera core stuff. To generate images and patterns they wrote a series of python scripts. But for us it’s the particle test shown in the video below that really turns our head. This system is capable of tracking and reacting to a lot of different elements on the fly why scanning the display at about 310 FPS. They have tested display scanning at twice that speed but some screen-wrap artifacts need to be worked out before that’s ready for prime time.

The team has promised to upload all the code to GitHub, but it will likely be a while before the success hangover blows over and they can approach the project again. You can view a video interview and samples of the visualizations in the videos after the break.

Thanks to their Professor, [Bruce Land], for submitting the tip! His students are always doing cool things. You can even watch some of his excellent courses online if you like: Here’s one on the AVR micro-controller.

Continue reading “FPGA Powers Blazingly Fast LED Matrix Audio Visualizer”

540 LEDs On A Geodesic Sphere

[burgerga] loves attending Music Festivals. He’s also a MechE who loves his LED’s. He figured he needed to put it all together and do something insane, so he build a huge, 15″ geodesic sphere containing 540 WS2812B addressable LED’s. He calls it the SOL CRUSHER. It sips 150W when all LED’s are at full intensity, making it very, very, bright.

As with most WS2812B based projects, this one too is fairly straightforward, electrically. It’s controlled by four Teensy 3.2 boards mounted on Octo WS2811 adapter boards. Four 10,000 mAh 22.2V LiPo batteries provide power, which is routed through a 5V, 30Amp heatsinked DC-DC converter. To protect his LiPo batteries from over discharge, he built four voltage monitoring modules. Each had a TC54 voltage detector and an N-channel MOSFET which switches off the LiPo before its voltage dips below 3V. He bundled in a fuse and an indicator, and put each one in a neat 3D printed enclosure.

The mechanical design is pretty polished. Each of the 180 basic modules is a triangular PCB with three WS2812B’s, filter capacitors, and heavy copper pours for power connections. The PCB’s are assembled in panels of six and five units each, which are then put together in two hemispheres to form the whole sphere. His first round of six prototypes set him back as he made a mistake in the LED footprint. But it still let him check out the assembly and power connections. For mechanical support, he designed an internal skeleton that could be 3D printed. There’s a mounting frame for each of the PCB panels and a two piece central sphere. Fibreglass rods connect the central sphere to each of the PCB panels. This lets the whole assembly be split in to two halves easily.

It took him over six months and lots of cash to complete the project. But the assembly is all done now and electrically tested. Next up, he’s working on software to add animations. He’s received suggestions to add sensors such as microphones and accelerometers via comments on Reddit. If you’d like to help him by contributing animation suggestions, he’s setup a Readme document on Dropbox, and a Submission form. Checkout the SolCrusher website for more information.

Thanks [Vinny Cordeiro], for letting us know about this build.

Continue reading “540 LEDs On A Geodesic Sphere”

Using WS2811 Chip to Drive Incandescent Lamps

What makes the WS2812-style individually addressable pixel LEDs so inviting? Their rich colors? Nope, you can get RGB LEDs anywhere. Their form factor? Nope. Even surface-mount RGBs are plentiful and cheap. The answer: it’s the integrated controller. It’s just so handy to speak an SPI-like protocol to your LEDs — it separates the power supply from the data, and you can chain them to your heart’s desire. Combine this controller and the LEDs together in a single package and you’ve got a runaway product success.

But before the WS2812, there was the WS2811 — a standalone RGB controller IC. With the WS2812s on the market, nobody wants the lowly WS2811’s anymore. Nobody except [Michael Krumpus], that is. You see, he likes the old-school glow of incandescent, but likes the way the WS2812 strings are easy to drive and extend. So he bought a bag of WS2811s and put the two together.

The controller IC can’t handle the current that an incandescent bulb requires, so he added a MOSFET to do the heavy lifting. After linking a few of these units together, he discovered (as one does with the LED-based WS2812s eventually) that the switching transients can pull down the power lines, so there is a beefy capacitor accompanying each bulb.

He wanted each bulb to be independently addressable, so he only used the blue line of the RGB controller, which leaves two outputs empty. I’m sure you can figure out something to do with them.

Needless to say, we’ve seen a lot of WS2812 hacks here. It’s hard to pick a favorite. [Mike] of “mike’s electric stuff” fame built what may be the largest installation we’ve seen, and this hack that effectively projection-maps onto a randomly placed string of WS2812s is pretty cool. But honestly, no project that blinks or glows can go far wrong, right?

Continue reading “Using WS2811 Chip to Drive Incandescent Lamps”

Hackaday Links: June 5, 2016

CERN is having a hackathon. It’s in October, yes, but the registration is closing on the 15th of June. They’ve been doing this every year, and the projects that come out of this hackathon are as diverse as infrastructure-less navigation, cosmic ray detectors, and inflatable refrigerators.

Have one of those solder fume extractors? Here’s an obvious improvement. [polyglot] put a strip of LEDs around the frame of his solder fume extractor to put a little more light on the subject.

A few months ago, [Bunnie] started work on a book. It was the Essential Guide to Electronics in Shenzhen. It’s made for hardware hackers to figure out how to buy stuff in Shenzhen, using a neat point-and-understand interface. Those books are now being shipped to people around the globe. I got one, and here’s the mini-review: it’s awesome. Is it a complete travel guide? No, but if you dropped me off at Hong Kong International, I could probably 1) Make it to Shenzhen 2) Buy random LEDs 3) Find a hotel 4) Get a beer 5) Not die. Pics below.

You’re hackers, and that means you’re the people who build stuff for all those ‘makers’ out there. Don’t have an MBA? No problem, [Dave Jones] has your back. He re-did his Economics of Selling Hardware video from several years ago. It’s 25 minutes long, and gives you enough information so you’re not a complete idiot at the business end of design.

Like Raspberry Pis stuffed into things? Here’s a Pi Zero stuffed into a MegaDrive cartridge. Now someone grab a Sonic and Knuckles cart, build a ROM reader, and do a proper cart-reading emulator.

If you’re into R/C, you know about Flite Test. They’re the folks that make crazy, crazy model planes out of Dollar Tree foam board, and have gotten hundreds of people into the hobby. Flite Test is having their own con, Flight Fest, in a little over a month. It’s in Ohio, and from last year’s coverage of the event, it looks like a really cool time.

So, No Man’s Sky is coming out soon. It’s a space game set in a procedurally generated, infinite galaxy. Does anyone have any idea on how to form a Hackaday clan? Somebody should start a Hackaday clan/alliance/thing. I’ll meet you guys at the core.

Thinking of You: IoT Style

Do you have loved ones who live far away? Or do you just want an interesting starter ESP8266 project to get your feet wet? If the answer to either of these questions is “yes”, we’ve got just the project for you. [Craig Lindley] built a “thinking of you” button-and-LED display device that helps people keep in touch, in a very simple way.

We like the minimalism of the design. One party presses their button, electrons flow, WiFis WiFi, data travels through a set of tubes, and an LED far away glows a pre-arranged color. The other side can signal back to say “hi” as well. It’s a cute item to have on your desk, or wherever you spend the most time. If you’re new to all of this, you can hardly beat the circuit for its simplicity.

Yeah, you could totally just send the other person a text message or an e-mail. But then you don’t get an excuse to play around with NodeMCU, and it just lacks the personal hacker touch. The code is available in a zip file here, and if you want to stay in touch with someone other than [Craig]’s sisters, you’ll probably want to customize it a bit.