Coloring 3D Prints With Sharpies


Printing objects in full color easily is one of the paramount goals of the ‘squirting plastic’ 3D printer scene, and so far all experiments have relied on multiple colors of filament, and sometimes multiple extruders. This, of course, requires a stock of different colored filaments, but [Mathew Beebe] has a different idea: why not dye a natural colored filament just before it’s fed into a printer? Following his intuition, [Mathew] is doing some experiments with the common Sharpie marker, and the resulting prints look much better than you would expect.

The basic procedure or this technique is to drill a hole in the butt end of the Sharpie, pull out the felt in the tip, and feed a length of filament through the marker before it goes into the extruder. The filament is dyed with the Sharpie ink, and the resulting print retains the color of the marker.

Despite the simplicity of the technique, the results are astonishing. An off-white ‘natural’ filament is easily transformed into any one of the colors found in Sharpies.

Besides the common Sharpie, there’s a slightly more interesting application  of this technique of coloring 3D printer filament; as anyone who has ever been in a dorm room with a blacklight knows, you can use the dye inside a common highlighter to make some wicked cool UV-sensitive liquor bottles. Whether the ‘Sharpie technique’ works with highlighters or other markers is as yet unknown, but it does deserve at least a little experimentation.

Video below.

Continue reading “Coloring 3D Prints With Sharpies”

Tearing through floppy drives to build a small-format dot matrix printer

The accuracy which [Mario] achieved in his pen plotter dot matrix printer is very remarkable. He tore through a pile of floppy drives to get the parts he wanted, and chose to go with a fine-point Sharpie marker as a print head. In the video after the break he flatters us with a printout of the Hackaday logo, but you also get a look at one problem with the build. The ink doesn’t always flow from the felt tip and he has to coax it (almost like priming a pump) with a piece of scrap paper.

He was inspired by the pen printer we featured back in June. This rendition features a printing area of 1.5×1.5 inches that can accommodate 120×120 black and white pixels. He’s not a microcontroller type of guy and is driving the printer from the parallel port of his computer.

The best printing technique puts the pen down and moves it around just a bit (helps prevent the ink flow problem we mentioned earlier) and produces images like one in the lower right. We love the 8-bit nature of the result and would use this all the time to make our own greeting cards.

Continue reading “Tearing through floppy drives to build a small-format dot matrix printer”

Half-tone CNC with man-powered Z axis

We think this is an intriguing take on half-tone art. It’s a CNC machine that uses an Arduino and two stepper motors to draw on a paper-covered drum. But you’re not just going to set it and forget it. To simplify the device, the Z-axis is not mechanized, but requires the dexterous opposing digit of a person to actuate.

The first prototype used a frame cut from plywood, but the developers moved to some attractive laser-cut Lexan for the final version. The rotating drum was inspired by observing the off-set printing process. It greatly simplifies the build when compared to a flat CNC bed. But including a Z-axis solution that could account for differently sized dots really opens a can of worms. Because of this, the choice was made not to automate that task, but to leave it up to the user. A clickable Sharpie does the marking. When the pen is in place, you click the plunger to hold the felt tip against the paper until a dot of the appropriate size has leeched onto the paper.

It’s not a bad solution to the problem. Especially if you don’t have the high-end milling equipment necessary to do this on a piece of plywood.

[Thanks Dron]