Hackaday Prize Entry: Homebrew Smartwatches

The Pebble Smartwatch has been around for years, and the introduction of the Apple Watch has everyone looking at wrist-mounted computing as the newest gadget consumers can glom onto. There was never any doubt the 2015 Hackaday Prize would have more than a few smartwatches.

[Ramon]’s Zerowatch gets its name from the Arduino Zero, as this watch is based off of and completely compatible with the Arduino Zero. With a 48 MHz ARM Cortex M0+, a three-axis accelrometer, a microSD card slot, and a bright OLED display, this is an extremely capable wrist-mounted computer. As with all wearable electronics, the enclosure makes or breaks the entire device, and [Ramon] has a very slick 3D printed case for this watch.

Connectivity is important for smartwatches, and that’s something [Montassar]’s Open Source Smart Watch doesn’t skimp out on. He’s using an STM32F4 as the main controller and a 1.44″ TFT, and adding the standard Bluetooth module — an HC-05 — to the mix. [Montasar]’s project is also tackling connectivity by working on a few Android apps that connect directly to this phone. He’s using the MIT App Inventor to speed up development for these phone apps, and makes custom smartwatch apps a breeze.

Both are great projects, and thanks to free, open source, and easy to use tool chains, both projects are excellent examples of open hardware development and a great entry to The Hackaday Prize.

The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Entry: New Firmware For A Smartwatch

Smartwatches are the next big thing. Nobody knows what we’re going to use them for, but that’s never stopped a product from being the hottest item around. The WeLoop Tommy isn’t the Apple Watch, it isn’t the Moto360, and it isn’t the Microsoft Band. It is, however, a nice smartwatch with a Sharp memory display and a battery that lasts longer than a few days. For his Hackaday Prize entry, [Krzysiek] is making an open source firmware for the WeLoop Tommy that will add capabilities no other smartwatch has.

This project is a complete reverse engineering of the WeLoop Tommy smartwatch. [Krzysiek] is tearing everything down to the bare components and figuring out how the RAM, Flash, buttons, LCD, and accelerometer connect to the processor. After that, it’s time for custom firmware.

Already [Krzysiek] has a test app that displays [OSSW] on the Sharp memory display. It’s not much, but the hardware is solid. With the right firmware, the WeLoop Tommy will be able to do just about everything an Android, Apple, or Microsoft smartwatche can do using repurposed hardware and open source firmware.

The 2015 Hackaday Prize is sponsored by:

OK Google, Open Sesame

There are a myriad of modern ways to lock and unlock doors. Keypads, Fingerprint scanners, smart card readers, to name just a few. Quite often, adding any of these methods to an old door may require replacing the existing locking mechanism. Donning his Bollé sunglasses allowed [Dheera] to come up with a slightly novel idea to unlock doors without having to change his door latch. Using simple, off the shelf hardware, a Smartwatch, some code crunching and a Google Now app, he was able to yell “OK Google, Open Sesame” at his Android Wear smartwatch to get his apartment  door to open up.

The hardware, in his own words, is trivial. An Arduino, an HC-05 bluetooth module and a servo. The servo is attached to his door latch using simple hardware that looks sourced from the closest hardware store. The code is split in to two parts. The HC-05 listens for a trigger signal, and informs the Arduino over serial. The Arduino in turn activates the servo to open the door. The other part is the Google Now app. Do note that the code, as he clearly points out, is “barebones”. If you really want to implement this technique, it would be wise to add in authentication to prevent all and sundry from opening up your apartment door and stealing your precious funky Sunglasses. Watch a video of how he put it all together after the break. And if you’re interested, here are a few other door lock hacks we’ve featured in the past.

Continue reading “OK Google, Open Sesame”

THP Quarterfinalist: WALLTECH Smartwatch

While there is lots of hype about a big company launching a new wearable product, we’re more interested in [Walltech]’s open source OLED Smartwatch. This entry into The Hackaday Prize merges a collection of sensors and an OLED screen into a wearable device that talks to your smartphone over Bluetooth Low Energy.

The device is based on the IMUduino BTLE development board. This tiny Arduino clone packs an inertial measurement unit (IMU), a Nordic nRF8001 Bluetooth radio, and an ATMEGA32u4 microcontroller.

The 1.5″ OLED display comes from [miker] who makes an OLED module based on the SSD1351. A STP200M 3D pedometer provides activity monitoring in a tiny package.

On the hardware side, packaging all these components into something that will fit on your wrist is quite difficult. The prototype hardware is built from mostly off the shelf components, but still manages to be watch sized.

At this point, it looks like the code is the main challenge remaining. There’s a lot of functionality that could be implemented, and [Walltech] even mentions that it’s designed to be very customizable. It even supports Android; the Apple Watch can’t do that.

SpaceWrencherThe project featured in this post is a quarterfinalist in The Hackaday Prize.

Upgrading the Battery In a Wrist PDA

No, your eyes do not deceive you. That’s a wrist-mounted PDA. Specifically, a Fossil Wrist PDA, also known as an Abacus, that was sold from 2003 to about 2005. Yep, it’s running PalmOS. [mclien] has had this watch/PDA for a while now, and found the original 180mAh battery wasn’t cutting it anymore. He made a little modification to the watch to get a 650mAh battery in this PDA by molding a new back for it.

The original PDA used a round Lithium cell, but being ten years old, the battery technology in this smart watch is showing its years. [mclien] found two batteries (380mAh and 270mAh) that fit almost perfectly inside the battery.

The new batteries were about 3mm too thick for the existing case back, so [mclien] began by taking the old case, adding a few bits of aluminum and resin, and making a positive for a mold. Two or three layers of glass twill cloth were used to form the mold, resined up, and vacuum bagged.

After many, many attempts, [mclien] just about has the case back for this old smartwatch complete. The project build logs are actually a great read, showing exactly what doesn’t work, and are a great example of using hackaday.io as a build log, instead of just project presentation.

Fixing the Unfixable: Pebble Smartwatch Screen Replacement

[Colt] found himself with a broken Pebble, so he fixed it. The Pebble watch really ignited the smartwatch world with its record-breaking Kickstarter campaign. Working on the Pebble has proved to be frustrating experience for hardware hackers though. Ifixit’s teardown revealed the Pebble extremely difficult to repair. This isn’t due to some evil plan by the smartwatch gods to keep us from repairing our toys. It’s a problem that comes from stuffing a lot electronics into a small waterproof package. [Colt’s] problem was a bad screen. Pebble has a few known screen issues with their early models. Blinking screens, snow, and outright failed screens seemed to happen at an alarming rate as the early Kickstarter editions landed. Thankfully all those issues were corrected and replacements sent to the unlucky owners.

The actual screen used in the Pebble is a Sharp Memory LCD. Memory is an apt name as the screens actually behave as a SPI attached write only memory. Sharp sells flexible printed circuit (FPC) versions of the LCDs to aid in debugging. For space constrained designs though, an elastomeric or “zebra strip” connector is the common way to go. Alternating bands of conductive and insulating material make electrical connections between the Pebble’s circuit board and the conductive portions of the LCD glass.

[Colt] found himself with a dead screen out of warranty, so he decided to attempt a screen replacement. He found a replacement screen from Mouser, and proceeded to remove the top case of his watch. The top plastic case seems to be the hardest part of getting into a Pebble. It appears to be bonded with a glue that is stronger than the plastic itself. [Colt] broke the glass of his screen during the removal, which wasn’t a big deal as it was already dead. Prying only destroyed the top plastic, so he broke out a rotary tool which made quick work of the plastic.  The new screen worked perfectly, but had to be held in just the right position over its zebra connector. Some waterproof epoxy held it in place permanently. The next step was a new top cover. An old flip phone donated its plastic shell to the effort, and hot glue kept everything in place. [Colt] finished his work with a couple of layers of model paint. The result certainly isn’t as pretty or waterproof as the original. It is functional though, and about $120 USD cheaper than buying a new Pebble.

Continue reading “Fixing the Unfixable: Pebble Smartwatch Screen Replacement”

Hackaday Links: December 8, 2013


Let’s start off with some high voltage. Here’s a sweet Jacob’s Ladder build from [Robert]. The site hosting his short writeup has been up and down for us so here’s a cache link.

Speaking of high voltage, if you want to switch mains with your project [Tom] has a breakout board for cheap mechanical relays. [via Dangerous Prototypes]

[Dario] made his own version of an electronic Advent calendar [translated]. There are no numbers, you must solve the mystery of the flashing LEDs to figure out which package goes with each day.

If you ever work with lighted arcade buttons here’s a guide for swapping out the light for an RGB LED. This hack uses through-hole LEDs. We’ve actually seen a surface mount hack that includes a PCB to mimic the old bulbs.

Next time you stay overnight at an event you can give yourself the best view in the campground. This tiny little camper was mounted on a scissor lift! That first step on the way to the Porta Potty is a doozy! [via Adafruit]

[Žiga] was nice enough to demonstrate this smart-watch hack by displaying our name and logo (we love pandering!). It features the MSP-WDS430 which is a surprisingly stylish offering from Texas Instruments. In addition to analog clock hands it has an OLED display driven by the MSP430 inside.

Here’s a quick PIC-based metal detector which [Nicholas] built.

And finally, [Chet] saw the oil tank level sensor we featured this week. He built a nearly identical system earlier this year. The oil level sensor works in conjunction with the custom thermostat he built around an Android tablet.