Hackaday Prize Best Product Finalist: Shape Shifting Structures For Space

While [Elon Musk] and [Jeff Bezos] are working on getting us to Mars and the Moon, [Ronald Jaramillo] is working on building structures once we get there. To that end, he’s been developing the ZBeam, two rolls of links that zip together like a zipper to form a rigid beam.

ZBeam making, regolith munching machine
ZBeam making, regolith munching machine

Initially stored in a compact cube targeted to eventually fit in a CubeSat’s dimension’s, 100 mm x 100 mm x 100 mm, the beam emerges from within the cube and will be able to connect with other cubes to form rigid structures. His hope is that they can one day be made automatically from lunar or Martian regolith (loose surface dirt) munching machines. His current one has 160 mm sides and uses a servo hacked to turn continuously.

In his hackaday.io project logs he shows the trial and error he’s gone through to get to his current stage: experimenting with the links to form a more rigid beam, fine tuning the unreeling of the rolls of links to prevent jamming, adding a safety-ratchet-gear to the gearing to overcome speed issues, and more. He currently 3D prints as many connected sets of links as he can on his Prusa i3, and then manually connects sets together to make a longer chain, but he has his eye on the Printrbot Printrbelt for printing arbitrarily long chains in one piece.

You can see one pretty impressive iteration of the ZBeam in action in the video below and more is on his project page. In fact, the judges for the 2017 Hackaday Prize liked [Ronald]’s projects so much that they designated it as a Best Product finalist.

Continue reading “Hackaday Prize Best Product Finalist: Shape Shifting Structures For Space”

Space tech helps athlete attain world record

German athlete [Wojtek Czyz] set a new world record for the long jump at the Paralympics 2008 in Beijing, with the aid of his space tech enhanced prosthetic leg. He jumped a record 6.5 meters, 27 centimeters more than the previous record. Prior to switching to his new prosthetic leg for athletic competitions, he was prone to breaking the prosthesis when he performed to the best of his abilities. [Czyz] and his trainer met with ESA’s Technology Transfer Programme (TTP) technology broker MST Aerospace to assess the most important parts of the prosthesis. According to [Dr. Werner Dupont], MST Aerospace Managing Director, the crucial element was the connection angle, or L-bracket. Working with German company ISATEC, they developed a new L-bracket using a much lighter and stronger material from the Alpha Magnetic Spectrometer (AMS), which is an instrument that will be installed on the ISS to study extraterrestrial matter. We find it interesting and pretty cool that space technology can help enhance a disabled athlete’s performance, and think that this could lead to interesting possibilities, even for those who aren’t athletes.

[via Boing Boing]