The Elements Converge for ±.002 in Tolerance

What can be accomplished with just a torch and compressed air? We can think of many things, but bringing a 17-foot-long marine shaft into ±.002 in tolerance was not on our list.

Heat straightening (PDF) utilizes an oxy-acetylene flame that is used to quickly heat a small section of a workpiece. As the metal cools, it contracts more than it expanded when heated, resulting in a changed volume. With skill, any distortions on a shaft can theoretically be straightened out with enough time (and oxy-acetylene). Heat straightening is commonly applied to steel but works on nickel, copper, brass and aluminum additionally.

[Keith Fenner’s] standard process for trueing stock is sensitive enough that even sunlight can introduce irregularities, but at the same time is robust enough to carry out in your driveway. However, even though the only specialty tools you need are a torch, compressed air and work supports, watching [Keith] work makes it clear that heat straightening is as much an art as it is a science. Check out his artistry in the video below the break. Continue reading “The Elements Converge for ±.002 in Tolerance”

[CNLohr] Reverses Vive, Valve Engineers Play Along

[CNLohr] needs no introduction around these parts. He’s pulled off a few really epic hacks. Recently, he’s set his sights on writing a simple, easy to extend library to work with the HTC Vive VR controller equipment, and in particular the Watchman controller.

There’s been a lot of previous work on the device, so [Charles] wasn’t starting from scratch, and he live-streamed his work, allowing others to play along. In the process, two engineers who actually worked on the hardware in question, [Alan Yates] and [Ben Jackson], stopped by and gave some oblique hints and “warmer-cooler” guidance. A much-condensed version is up on YouTube (and embedded below). In the links, you’ll find code and the live streams in their original glory, if you want to see what went down blow by blow. Code and more docs are in this Gist.

Continue reading “[CNLohr] Reverses Vive, Valve Engineers Play Along”

Build Your Own YouTube Play Button

The only thing that matters in this world is the likes you get on social media platforms. To that end, YouTube has been sending out silver and gold play buttons to their most valuable creators. [Sean] hasn’t screamed into a microphone while playing Minecraft long enough to earn one of these play buttons, so he decided to build his own.

This play button isn’t just a bit of pot metal ensconced in a frame brought to you by Audible dot com; this YouTube play button actually does something useful. It’s a PCB with 144 LEDs working together as a display. There’s an Atmel SAMD21 microcontroller on board to drive the LEDs, and an ESP8266 to pull data down from the Internet. What data is worthy enough to go on an Arduinofied YouTube play button? The subscriber count for [Sean]’s channel, of course. Go subscribe, it might crash his Play button.

Admittedly, there were a few problems with this Play button PCB. Firstly, the ESP8266 can’t directly communicate with the YouTube API to pull down the subscriber count. That problem was fixed with a Raspberry Pi that could connect to the API, and programming the ESP to pull the data from the Pi. Second, this was [Sean]’s first experiment with double-sided SMD boards reflowed in a toaster oven. The first side to be assembled was easy, but to get the second side on, [Sean] turned to low-temp bismuth solder paste. Except for a small error in assembling the board, everything worked as planned.

It’s a great project, and if you want to check out what the better parts of YouTube look like, check out [Sean]’s video below. Don’t forget to rate, comment, like, unlike, or subscribe.

Continue reading “Build Your Own YouTube Play Button”

Low-cost Video Streaming with a Webcam and Raspberry Pi

Some people will tell you that YouTube has become a vast wasteland of entertainment like the boob tube before it. Live streaming doesn’t help the situation much, and this entry level webcam live-stream server isn’t poised to advance the art.

We jest, but only a little. [Mike Haldas] runs a video surveillance company that sells all manner of web-enabled cameras and wondered what it would take to get a low-end camera set up for live streaming. The first step was converting the Zavio webcam stream from RTSP (real-time streaming protocol) to the standard that YouTube uses, RTMP (real-time messaging protocol). Luckily, FFmpeg handles that conversion, so he compiled it for his MacBook Pro and set up a proof of concept. It worked, but he needed a compact solution that would free up his laptop. Raspberry Pi to the rescue – after loading a bunch of libraries and a four-hour build and install of FFmpeg, the webcam was streaming 1080p video of [Mike]’s sales office. He was worried that the Pi wouldn’t have the power needed for the job, and that it would be unstable. But as of this writing, the stream below has been active for six days, and it’s riveting stuff.

Raspberry Pis are a staple in the audio streaming world, like this pro-grade FM broadcast streaming rack or this minuscule internet radio streamer. And of course there’s this quick and dirty, warm and fuzzy streaming baby monitor.

Continue reading “Low-cost Video Streaming with a Webcam and Raspberry Pi”

Barb Makes Mechanical Pokey Finger With Filament Rivets

We were trolling around, and we stumbled on [Barb]’s video series called (naturally enough) “Barb Makes Things“. The plot of her videos is simple — Barb points a time-lapse camera at her desk and makes stuff. Neat stuff.

Two particularly neat projects caught our attention: a mechanical pointy-finger thing and the useful 3D-printing-filament rivets that she used to make it. (Both of which are embedded below.) The finger is neat because the scissor-like extension mechanism is straight out of Wile E. Coyote’s lab.


But the real winners are the rivets that hold it together. [Barb] takes a strand of filament, and using something hot like the side of a hot-glue gun, melts and squashes the end into a mushroom rivet-head. Run the filament through your pieces, mushroom the other end, and you’re set. It’s so obvious after seeing the video that we just had to share. (Indeed, a lot of cheap plastic toys are assembled using this technique.) It’s quick, removable, and seems to make a very low-friction pivot, which is something that printed pins-into-holes tends not to. Great idea!

Continue reading “Barb Makes Mechanical Pokey Finger With Filament Rivets”

X-Ray Everything!

We’re not 100% sure why this is being done, but we’re 110% happy that it is. Someone (under the name of [The X-Ray Playground]) is putting interesting devices under an X-ray camera and posting videos of them up on YouTube. And he or she seems to be adding a few new videos per day.

Want to see the inner workings of a pneumatic microswitch? Or is a running pair of servo motors more your speed? Now you know where to look. After watching the servo video, we couldn’t help but wish that a bunch of the previous videos were also taken while the devices were being activated. The ball bearing wouldn’t gain much from that treatment, but the miniature piston certainly would. [X-Ray Playground], if you’re out there, more working demos, please!

How long the pace of new videos can last is anyone’s guess, but we’re content to enjoy the ride. And it’s just cool to see stuff in X-ray. If we had a postal address, we know we’d ship some stuff over to be put under the lens.

We don’t have as many X-ray hacks as you’d expect, which is probably OK given the radioactivity and all. But we have seen [MikesElectricStuff] taking apart a baggage-scanner X-ray machine in exquisite detail, and a DIY fluoroscope (yikes!), so we’re not strangers. Who needs Superman? We all have X-ray vision these days.

Thanks [OiD] for the tip!

HVAC techs – Hackers who make house calls

It’s been said that hackers are enamored with complex networks. In the 60s and 70s, the telephone network was the biggest around, singing a siren song to an entire generation of blue-boxing phone phreaks. I started a bit closer to the house. As a child I was fascinated by the heating system in the basement of our home: a network of pipes with a giant boiler in the middle. It knew when to come on to provide heat, and when to kick on for hot water. I spent hours charting the piping and electrical inputs and outputs, trying to understand how everything worked. My parents still tell stories of how I would ask to inspect the neighbors heating systems. I even pestered the maintenance staff at my nursery school until they finally took me down to see the monstrous steam boiler which kept the building warm.

My family was sure I would grow up to be a Heating Ventilation and Air Conditioning (HVAC) tech. As it turned out, electronics and embedded systems were my calling. They may not have been too far from the truth though, as these days I find myself designing systems for a major manufacturer of boiler controls and thermostats.

Recently a house hunt led me to do some HVAC research on the web. What I found is that HVAC techs have created a great community on the internet. Tradesmen and women from all over the world share stories, pictures, and videos on websites such as HVAC-Talk and HeatingHelp.

Continue reading “HVAC techs – Hackers who make house calls”