New Version Of Energia Supports Wolverine And Connected

Energia UpdateThere is something to be said about how easy it is to write Arduino code. For those of who you are big fans of the MSP430 and Texas Instrument’s LaunchPad series, an upcoming release of Energia brings Arduino style coding to the two newest member of the LaunchPad family: the TivaC Connected LaunchPad EK-TM4C1294XL and Wolverine FRAM LaunchPad MSP-EXP430FR5969LP.

“Energia is an open-source electronics prototyping platform … with the goal to bring the Wiring and Arduino framework to the Texas Instruments MSP430 based LaunchPad.” The newest release of Energia is exciting for the sole reason that the new TivaC Connected LaunchPad and Wolverine FRAM LaunchPad are supported. The TivaC Connected LaunchPad is a $20 development board for TI’s low-power ARM processors that has Ethernet connectivity. The MSP430 at the heart of the Wolverine FRAM LaunchPad uses up to 250x less power than flash based MCUs at low speeds in addition to many other cool benefits.

Be sure to keep an eye out for the new version of Energia, it should be arriving sometime next week. Now is a better time than ever to try out the Tiva C or the MSP430 MCUs!

LED Throwies Turn Statues Into Heart Attack Risks

FM6LSOVHSICZLWK.LARGE

[Mike] has just put a new spin on LED throwies — turning innocent statues into scary possessed demons of the night. He calls them Statueyes, and while it’s not quite vandalism, you might still cause a public disturbance.

If you’re not familiar, magnetic LEDs throwies are a fun little way to add some light to the city at night. They’re a little bit wasteful (sometimes you can’t retrieve them), but so cheap to make it’s sometimes worth it. Depending on what you’re using them for they can open up a whole world of possibilities — like this location tracking augmented reality using IR LED throwies!

Anyway, the main difference with [Mike’s] take on the project is he’s using home-made play-dough which allows him to stick these creepy eyes on non-metallic statues. The Play-Doh in question has an interesting ingredients list: flour, water, salt, vegetable oil and… cream of tartar? It’s the classic edible Play-Doh recipe, but to the unfamiliar it certainly sounds odd.

How cheap do you think we could make these with a simple dimming circuit? Imagine seeing a statues eyes light up as you’re walking by…

Custom Mechanical Keyboards

[Wyager] was shopping around for a mechanical keyboard, and after noticing custom PCB manufacturing had come down in price so much, he decided to build his own. The end result is a keyboard that’s so elegant in its design, that it could, with a little work, become a very interesting Kickstarter project.

The design had three requirements: cheap, mechanical switches, and extremely customizable. The cheap requirement was solved by splitting the keyboard into two parts with a master/slave arrangement. The boards are connected by a 1/8″ TRRS jack conveying an I2C bus. Since both boards are identical except for the code running on the Teensy dev boards, [Wyager] saved a bit of cash by using two of the three PCBs that came with his OSHPark order.

The mechanical switches – Cherry MX Blues – are rather expensive parts for a failed project. For fear of failure, [Wyager] first ordered a PCB containing the footprint of only one key. With the footprint correct, he graduated to a 2×2 matrix. Once that was verified, the 6×5 matrix was ordered. Everything worked perfectly the first time, something we can’t say about many of our projects.

The code, board files, and schematics are available over on the github

SOAP Drama: An Interview With The SOAP Creators

A few days ago, we caught wind of SOAP, a Kickstarter project for an Android-based home automation router. With a quad-core ARM, quad gigabit Ethernet ports, 802.11ac, SATA, and every radio under the sun – all for $100 (sans display, $170 with display), it seemed too good to be true. At the time, it probably was: the images from the PCB prototype were taken from [Bunnie Huang]’s open source laptop, there weren’t enough Ethernet ports for a router, and the hardware just seemed all wrong.

The guys behind SOAP have decided to respond to these accusations by posting a huge update on their Kickstarter page and answering a few questions from me. Interview follows below.


HaD: There’s a BOM/cost analysis breakdown for the Essentials package (the SOAP sans display) that puts the total cost at about $130. This is the reward for pledging at the $100 level. How accurate is this cost analysis, and how do you plan on meeting that reward level?

SOAP: This cost analysis that you mention is very accurate. We will not profit on the early release pricing of $60.00 we have taken the loss leader pricing to attract backers and press (and we think we have done a good job). We are working with a large router manufacturer and this is really the link that makes the pricing possible without them we couldn’t do this.

HaD: You’re using a Quad Core Freescale i.MX processor for SOAP, and putting a four port Gigabit router in there. The Quad core i.MX chips only have one Gigabit port, and that’s limited to 470 Mbps. How are you solving this problem, and what are you using as a MAC/PHY?

SOAP: First off let me state that we are very aware of the CPU limitations and we have done a lot of work on finding a solution and we do have a unique solution. We have support from a big player in the router industry that has offered us a unique solution that we have been working on to bypass this issue. We will post more on this after our trip to San Jose. This is our fallback method and yes its benchmarks are not as pretty as we want them but they are getting there and we feel with enough tweaks we can get this to decent level.

This is from our layout guy: We are planning I.mx processor’s gigabit port will be connected to external IC working as a switch. 1Gb ethernet -> 1 to 4 switch -> 4x Gb Ethernet ports. Possible  http://www.ti.com/lit/ds/symlink/tnetx4090.pdf. Use 4 ports from there plus put RGMII Ethernet transceiver from Marvell  for each ETH port and we will have on board Ethernet switch.

HaD: What WiFi chipset/chipsets are you using? Will that/they be able to do 802.11ac at full speed, and how are you doing this with (I think) only one antenna on the updated board images?

SOAP: The speeds have varied greatly on the chipset and how buggy the software was for the day but we have clocked speeds over 1 gigabyte per second and we will continue to develop this further to achieve maximize speeds this is where our new Union with the guys over at Droidifi will help.

In our prototype we tested Avastar 88W8864, Broadcom 4360 , and a couple more that failed to actually work.  We didn’t get those all functioning like we would have wanted as there is little support for android and router chipsets to date. We demo with a Broadcom chipset.

We want to use Quantenna QAC2300 but at current funding we will be using the Broadcom we have received a lot of suggestions from our backers and a new big player behind us that thinks they have the right match we are waiting to announce this after our meeting in San Jose.

We have one antenna on the most current design but we are planning on adding two more for the final design. We didn’t place them on the most recent design because we are waiting to see how much funding we get to finalize the wifi chipset. We didn’t want antenna design that worked best with a Broadcom when we switch to Marvel or Quantenna.

HaD: What is the status of the software? Do you have a repo somewhere that people could look over?

SOAP: We have been working with a new player from the older kickstarter project called Droidifi. We will be working with them on the software. This is a something we haven’t been able to announce till we lock it down but you are the first to know about this union. Check out our update later today.

HaD: Finally, do you have a functional prototype with the quad-core i.MX, four Ethernet ports, and WiFi? Can we see a video?

SOAP:  If you mean a mass production ready device that can be used by an end user then no. We have a solid functioning proof of concept prototype. We have a lot of Demo videos of our POC that show  what we have developed so far.  We  have to have the current PCB design manufactured to get down to the more rigorous testing and qualifying. All the specs listed on our kickstarter are what we currently are planning and we hope to fulfill the tech specs.

HaD: There are some other questions in the Kickstarter comments section, but honestly I don’t care about how many Twitter followers you have.

SOAP: Twitter was our marketing company. We thought people actually were following us but we have  since found out that half of them are not real. Check this out though.

All in all we understand how ambitious this project looks and we also know that it technology development can run into roadblocks and things but we want to be clear we are not a scam and we are quite aware where these attacks have originated. We will continue to work hard on this project, we will not be running off to Costa Rica and we plan on seeing everyone at CES next year.


The TL;DR for everyone without an attention span:

Yes, the $100/$170 price is too good to be true. It’s called a loss leader to generate interest. This part was a success. The SOAP guys are partnering with the DroidFi guys for the operating system. The Gigabit Ethernet will probably work, and the WiFi is limited by *nix chipset support. No complete functional prototypes yet.

So there you go. It’s not the ideal update with the SOAP crew showing off a shipping container of units ready to be shipped, but the project isn’t in as bad a shape as I originally thought.

Hackaday Gathering: Shanghai

Does Hackaday have any readers living in Shanghai? You bet! We’re going to be in Shanghai next week so we decided to invite the Hackaday community to a Shanghai Gathering!

We booked a venue and want to pack the place with at least 150 people on Thursday, March 20th. We’re picking up the bar tab and bringing along a few cases of T-shirts. At some point we’ll make some formal remarks about the path on which Hackaday is traveling, and where we hope to go. Get your tickets now, and start the perplexing process of deciding which piece of portable hacked hardware you want to bring along with you to show off to all of the other Hackaday aficionados.

Still not convinced? Check out the follow-up post from our Los Angeles Gathering back in January to see how much fun it is to get together with other readers. The Xin Che Jian hackerspace in Shanghai is helping us get this organized; we saw a hackerspace intro from them a couple of years back. Thank you so much to [David] and [Paul] for their help with this! If you haven’t checked out the hackerspace, this gathering is a great way to meet some of the members.

[Background Image Source]

Retrotechtacular: Shedding Light On Holograms

This week’s Retrotechtacular is a 1972 introduction to holography produced by the fine folks at Encyclopædia Britannica. It details quite admirably what holograms are and how they’re made.

Holograms are quite different from photographs, though both are recorded on film. Holography is based on the additive effects of waves: two crests of equal amplitude create a larger crest, while a crest and a trough of equal amplitude cancel each other out, causing an interference effect. The video demonstrates the concept nicely with water ripples and explains that the same effect happens with sound waves and light waves.

Lasers are the key to the intense and spectrally pure light required for holography. Incandescent light consists of too many wavelengths to be effectively split into two identical light wave sources. To create a hologram, a laser is split with an optical device into two beams. One beam is focused directly on the object being recorded and is called the object beam. The second beam is directed away from the scene through a series of mirrors and shone directly onto a film emulsion.

The film records the interference between the waves of the two beams. It appears to be blank after development, but upon close inspection reveals stripes of light and dark. When the exposed film is placed in the path of only the reference beam, the interference patterns recorded on the film split the beam back into two, recreating the scene. With the aid of a screen for projection, the hologram can be seen showing the original object in 2D. Another big difference between photographs and holograms is that even a small portion of a hologram can reproduce the entire scene, but a piece of a photograph is just that.

Continue reading “Retrotechtacular: Shedding Light On Holograms”

Sci-Fi Contest Prizes Make You Drool Like A Rancor

sci-fi-contest-v1000

It’s been awhile since we hosted a contest, now is the time to up our game. You have a few weeks to come up with the best Sci-Fi themed hack. We’ve amassed a number of prizes well worth fighting for, and the challenge will be won by a combination of clever, collaborative, and open. The booty includes rad (yeah, we said it) tools like Oscilloscopes, Logic Sniffers, Solder Stations, and Dev Boards, as well as themed offerings like classic Sci-Fi films and tchotchkes from our favorite fictional universes.

Yesterday we announced that Hackaday Projects is open for public registration and now we’re taking the new site for a spin. Previous contests like the Trinket and Fubarino versions became unwieldy for the Hackaday crew just because of the sheer volume of entries. The new interface will make it much easier. We also want to test out the collaborative features so one of the requirements for entry is to participate as a team. The winners will be picked based on how well the project is documented, how open (as in software and hardware) it is, how it fits the theme, and on how well the team worked together.

The contest starts right now and ends at 12:00:00am Pacific time (we know a lot of you like to push deadlines) on April 29th, 2014. Head over to the contest page to see all of the details. Let the games begin!

[Official Contest Page]

[Background Image Source]