Atomic Arduino (and Other) Development

Even the most die-hard Arduino fan boys have to admit that the Arduino development environment isn’t the world’s greatest text editor (they’d probably argue that its simplicity is its strength, but let’s ignore that for now). If you are used to using a real code editor, you’ll probably switch to doing your Arduino coding in that and then use the external editor integration in the IDE.

That works pretty well, but there are other options. One we noticed, PlatformIO, extends GitHub’s Atom editor. That makes it cross-platform, powerful, and with plenty of custom plug ins. It also supports a range of platforms including Arduino, many ARM platforms, MSP430, and even desktop computers running Linux or Windows.

Continue reading “Atomic Arduino (and Other) Development”

A Simple And Educational Brushless Motor

Sometimes there is no substitute for a real working model to tinker with when it comes to understanding how something works. Take a brushless motor for example. You may know how they work in principle, but what factors affect their operation and how do those factors interact? Inspired by some recent Hackaday posts on brushless motors, [Matt Venn] has built a simple breadboard motor designed for the curious to investigate these devices.

The rotor and motor bodies are laser-cut ply, and the rotor is designed to support multiple magnet configurations. There is only one solenoid, the position of which relative to the magnets on the rotor can be adjusted. The whole assembly is mounted on the edge of a breadboard, and can be rotated relative to the breadboard to vary the phase angle at which the drive circuit’s Hall-effect sensor is activated by the magnet. The drive circuit in turn can have its gain and time constants adjusted to study their effects on the motor’s running.

[Matt] has made all the design files available in his GitHub repository, and has recorded a comprehensive description of the motor’s operation in the YouTube video below the break. Continue reading “A Simple And Educational Brushless Motor”

Today Is World Create Day

It has finally arrived, today is World Create Day which is being celebrated with Hackaday Meetups in 64 cities throughout the world.

If you are at one of these meetups, share the fun and excitement of your event today using the hashtag #WorldCreateDay. We want a taste of what is going on in your town so Tweet early and Tweet often! If you can’t be there, join in on Hack Chat and watch the projects as they come in throughout the day. If you see one you love you can even request to join the team.

We want to feature your meetup on the Hackaday front page but we need your help to do it. Make sure you take a lot of pictures, and maybe even some video. Send those along with your tale of World Create Day to: prize at hackaday email address.

If you can’t make it to a live meetup, don’t let that stop you. Design Your Concept today and submit it to the Hackaday Prize; you’ll be making it in just ahead of the Monday deadline. Follow along with the #WorldCreateDay hashtag, encouraging others and posting info about your own project.

Oh, and that amazing art at the top of this post? There’s more were that came from. See all of the designs we’ve put together for World Create Day.

world-create-day-world-map

The HackadayPrize2016 is Sponsored by:

Color-Changing LED Makes Techno Music

As much as we like addressable LEDs for their obedience, why do we always have to control everything? At least participants of the MusicMaker Hacklab, which was part of the Artefact Festival in February this year, have learned, that sometimes we should just sit down with our electronics and listen.

With the end of the Artefact Festival approaching, they still had this leftover color-changing LED from an otherwise scavenged toy reverb microphone. When powered by a 9 V battery, the LED would start a tiny light show, flashing, fading and mixing the very best out of its three primary colors. Acoustically, however, it spent most of its time in silent dignity.

singing_led_led_anatomy

As you may know, this kind of LED contains a tiny integrated circuit. This IC pulse-width-modulates the current through the light-emitting junctions in preprogrammed patterns, thus creating the colorful light effects.

To give the LED a voice, the participants added a 1 kΩ series resistor to the LED’s “anode”, which effectively translates variations in the current passing through the LED into measurable variations of voltage. This signal could then be fed into a small speaker or a mixing console. The LED expressed its gratitude for the life-changing modification by chanting its very own disco song.

singing_led_hook_up_schematic

This particular IC seems to operate at a switching frequency of about 1.1 kHz and the resulting square wave signal noticeably dominates the mix. However, not everything we hear there may be explained solely by the PWM. There are those rhythmic “thump” noises, shifts in pitch and amplitude of the sound and more to analyze and learn from. Not wanting to spoil your fun of making sense of the beeps and cracks (feel free to spoil as much as you want in the comments!), we just say enjoy the video and thanks to the people of the STUK Belgium for sharing their findings.

Retro Rotary Raspi Phone Rings Alexa

[MisterM] is a man after our own heart. He loves to combine the aesthetic of vintage equipment with the utility of new technologies. His latest venture is AlexaPhone, which marries the nearly instantaneous retrieval and computation power of Amazon’s Alexa voice service with the look and feel of a 1970s rotary phone. Best of all, there’s no need to spin the dial and wait for it to go whirring back around. AlexaPhone is ready to take questions as soon as the handset is lifted.

Questions are transmitted through a salvaged USB VOIP phone plugged into the Pi. The user must hang up the receiver in order to trigger the search. Once Alexa has an answer, the audio comes back through a small external amplified speaker with a USB-rechargeable battery. Since the hardware is a bit atypical for Alexa, [MisterM] had a bit of trouble at first trying to query the service with a physical button until he came across this AlexaPi code.

This phone is actually a reproduction of a classic BT Trimphone, which explains the asterisk and octothorpe on the dial.  The modern internals meant that [MisterM] could take advantage of the ribbon cable coming off of the receiver hook to trigger the Pi to send the query. Watch [MisterM]’s kids put Alexa through her paces after the break.

If this has you feeling nostalgic, check out this vintage Chromecast TV we covered recently or this old Russian radio reborn as a Bluetooth speaker.

Continue reading “Retro Rotary Raspi Phone Rings Alexa”

TinyDriver – ATtiny84 Platform Without Arduino

You don’t need an Arduino for everything! Or do you? This is an argument that plays out here quite often. Whatever the outcome, most folks agree that once you’ve dipped your feet in the shallow end of the pool, the real fun is when you dive into the deep end.

[Mahesh Venkitachalam] designed tinyDriver, an experimental Open Source breakout board for the Atmel ATtiny84 chip. His idea was to create a convenient platform which can be used to understand microcontrollers in-depth, by letting users dive under the hood and make use of the various features of the chip such as timers, PWM, interrupts, ADC, and digital I/O. The ATtiny84 is cheap and simple enough for starters. Add a low-cost AVR programmer, install the free and cross-platform avr-gcc and avrdude tool chain, read up the data sheet, learn some C programming and start experimenting. Rinse and repeat and you’ll be a pro at it soon. He’s got a few starter projects documented on his website to get you going.

The hardware is open source, and the Git repository contains the hardware source and example code. If you’re a hardware noob, he’s thoughtfully added a PTC resettable fuse and reverse polarity protection on the board to make sure you don’t release the magic blue smoke prematurely. All of the I/O’s are broken out on a header, and the motor driver and RGB LED can be disabled when not needed. The board isn’t hand-assembly friendly, but he plans to crowd fund it shortly. If you want to move beyond the Arduino platform, projects like the tinyDriver are the way to go.

The HackadayPrize2016 is Sponsored by:

A 3D-Printed Engagement Ring

[Hans Peter] had reached the moment of popping the question. Going down on one knee and proposing to his girlfriend, the full romantic works.

He’s a brave man, [Hans]. For instead of heading for the jeweller’s and laying down his savings on something with a diamond the size of a quail’s egg he decided that his ring should contain something very much of him. So he decided to 3D print a ring and embed a slowly pulsing LED in it. He does mention that this ring is a temporary solution, so perhaps his soon-to-be-Mrs will receive something sparkly and expensive in due course.

To fit his LED and flasher in such a small space he used a PIC10F320 microcontroller that comes in a SOT-23-6 package. This was chosen because it has a handy PWM output to pulse the LED rather than flash it. This he assembled dead-bug style with an 0603 LED, and a couple of hearing aid batteries to power the unit. He has some concerns about how long the hearing aid batteries will power the device, so as he wrote he had better hurry and get on his knees. (He informs us in his tip email that she said yes.)

Surprisingly we’ve covered quite a few engagement ring builds over the years. Closest to this one is an LED ring powered by an induction coil, but we’ve also featured machined titanium rings and some rather nice cast rings.