How To Reverse Engineer Mechanical Designs For 3D Modeling

If you’re interested in 3D printing or CNC milling — or really any kind of fabrication — then duplicating or interfacing with an existing part is probably on your to-do list. The ability to print replacement parts when something breaks is often one of the top selling points of 3D printing. Want some proof? Just take a look at what people made for our Repairs You Can Print contest.

Of course, to do that you need to be able to make an accurate 3D model of the replacement part. That’s fairly straightforward if the part has simple geometry made up of a primitive solid or two. But, what about the more complicated parts you’re likely to come across?

In this article, I’m going to teach you how to reverse engineer and model those parts. Years ago, I worked for a medical device company where the business model was to duplicate out-of-patent medical products. That meant that my entire job was reverse engineering complex precision-made devices as accurately as possible. The goal was to reproduce products that were indistinguishable from the original, and because they were used for things like trauma reconstruction, it was critical that I got it right.

Continue reading “How To Reverse Engineer Mechanical Designs For 3D Modeling”

Better Beer Through Gene Editing

As much as today’s American beer drinker seems to like hoppy IPAs and other pale ales, it’s a shame that hops are so expensive to produce and transport. Did you know that it can take 50 pints of water to grow enough hops to produce one pint of craft beer? While hops aren’t critical to beer brewing, they do add essential oils and aromas that turn otherwise flat-tasting beer into delicious suds.

Using UC Berkley’s own simple and affordable CRISPR-CaS9 gene editing system, researchers [Charles Denby] and [Rachel Li] have edited strains of brewer’s yeast to make it taste like hops. These modified strains both ferment the beer and provide the hoppy flavor notes that beer drinkers crave. The notes come from mint and basil genes, which the researchers spliced in to yeast genes along with the CaS9 protein and promoters that help make the edit successful. It was especially challenging because brewer’s yeast has four sets of chromosomes, so they had to do everything four times. Otherwise, the yeast might reject the donor genes.

So, how does it taste? A group of employees from a nearby brewery participated in a blind taste test and agreed that the genetically modified beer tasted even hoppier than the control beer. That’s something to raise a glass to. Call and cab and drive across the break for a quick video.

Have you always wanted to brew your own beer, but don’t know where to start? If you have a sous vide cooker, you’re in luck.

Continue reading “Better Beer Through Gene Editing”

Retrotechtacular: A 180 GB Drive From 1994

Hard drive storage has gone through the roof in recent years. Rotating hard drives that can hold 16 terabytes of data are essentially available today, although pricey, and 12 terabyte drives are commonplace. For those who remember when a single terabyte was a lot of storage, the idea that you can now pick up a drive of that size for under $40 is amazing. Bear in mind, we are talking terabytes.

In 1994, that was an unimaginable amount of storage. Just a scant 24 years ago, though, you could get 90 gigabytes — 0.09 terabytes — if you didn’t mind buying an IBM mainframe and a RAMAC disk storage unit. You can see a promotional video digitized by Archive.org, below. Just keep in mind that IBM has a long history of calling disk drives DASD — an acronym for Direct Access Storage Device. You pronounce that “dazz-dee”, as you’ll hear in the video.

Continue reading “Retrotechtacular: A 180 GB Drive From 1994”