# Winding Your Own Small Coils

Depending on what you build, you may or may not run into a lot of inductors. If you need small value coils, it is easy to make good-looking coils, and [JohnAudioTech] shows you how. Of course, doing the winding itself isn’t that hard, but you do need to know how to estimate the number of turns you need and how to validate the coil by measurement.

[John] uses a variety of techniques to estimate and measure his coils ranging from math to using an oscilloscope. He even uses an old-fashioned nomogram from a Radio Shack databook circa 1972.

# How Big Is The Moon? Figure It Out Yourself

We have to confess that we occasionally send friends a link to “let me Google that for you” when they ask us something that they could have easily found online. Naturally, if someone asked us how big the moon is, we’d ask Google or another search engine. But not [Prof Matt Strassler]. He’d tell you to figure it out yourself and he would then show you how to do it.

This isn’t a new question. People have been wondering about the moon since the dawn of human civilization. The ancient Greeks not only asked the question, but they worked out a pretty good answer. They knew approximately how big the Earth was and they knew the moon was far away because it is seen over a very wide area. They also knew the sun was even further away because the moon sometimes blocks the sun’s light in an eclipse. Using complex geometry and proto-trigonometry they were able to work out an approximate size of the moon. [Matt’s] method is similar but easier and relies on the moon occluding distant stars and planets.

# What To Do With A Broken Television When You Can’t Fix It

Who can say ‘no’ to a free TV, even if it’s broken? This was the situation [Andrew Menadue] ended up in last year when he was offered an LG 39LE4900 LCD TV. As [Andrew] describes in the blog post along with videos (see first part embedded after the break), this particular television had been taken to a television repair shop previously after the HDMI inputs stopped working, but due to a lack of replacement parts the owner had to make due with the analog inputs still working. That is, until those stopped working as well.

The nice thing about these TVs is that they are very modular inside, as [Andrew] also discovered to his delight. In addition to the LG controller board, an inverter board and the power supply board, this TV also contained a TCON PCB. After some initial unsuccessful swapping of the parts with EBay replacements, nothing was (surprisingly) working, but it did turn out that the TCON and inverter boards are made and sold by AUO (major Taiwanese display manufacturer), along with the display itself.

In the end it turned out that the AUO boards and screen were fine, and after sourcing a board to convert VGA input to the LVDS signal accepted by the TCON board, the whole display worked. Naturally using a board with HDMI inputs would be nice, but it does show how a ‘broken’ TV can be turned into a really nice, big monitor without all too much effort if it’s just the controller board that went on the fritz.

# Classic Multimeter Tells You If Your WiFi’s Working

Debugging network issues isn’t easy; many a sysadmin has spent hours trying to figure out which of the many links between client and server is misbehaving. Having a few clear pointers helps: if you can show that theĀ  internet connection is up, that already narrows down the problem to either the server or, most likely, the client computer.

After hearing “is the internet up” one too many times, [whiskeytangohotel] decided to make a clearly visible indicator to show the status of the local uplink. He used his father’s old Simpson 260 VOM as a display, with its large analog indicator pointing at a steady value if the internet’s up, and wagging back and forth if there’s an outage. The exact value indicated is determined by the average ping time for a couple of different servers, so that you can also tell if the connection is slower than normal.

The ping times are measured by an ESP8266 connected to WiFi, which checks a predefined list of web servers and calculates the average ping time every fifteen seconds. An analog value in the 2.5 V range is then generated and measured by the meter. The smooth motion of an old analog meter stands in nice contrast to the modern-day problem of unstable WiFi.

While analog multimeters definitely have their uses, we’re the first to admit that our classic meters don’t see as much action as they could. Repurposing them as [whiskeytangohotel] did is a neat way of keeping those heirlooms around for the next generation. Of course, if you don’t have an analog multimeter, you could also use an analog clock for your ping meter. Continue reading “Classic Multimeter Tells You If Your WiFi’s Working”

# Bend Your Vase Mode Prints By Hacking The GCode

[Stefan] from CNCKitchen wanted to make some bendy tubes for a window-mountable ball run, and rather than coming up with some bent tube models, it seemed there might be a different way to achieve the desired outcome. Starting with a simple tube model designed to be quickly printed in vase mode, he wrote a Python script which read in the G-Code, and modified it allow it to be bent along a spline path.

Vase mode works by slowly ramping up the Z-axis as the extruder follows the object outline, but the slicing process is still essentially the same, with the object sliced in a plane parallel to the bed. Whilst this non-planar method moves the Z-axis in sync with the horizontal motion (although currently limited to only one plane of distortion, which simplifies the maths a bit) it is we guess still technically a planar solution, but just an inclined plane. But we digress, non-planar in this context merely means not parallel to the bed, and we’ll roll with that.

[Stefan] explains that there are quite a few difficulties with this approach. The first issue is that on the inside of the bend, the material flow rate needed to be scaled back to compensate. But the main problem stems from the design of the extruder itself. Intended for operating parallel to the bed, there are often a few structures in the way of operating at an angle, such as fan mounts, and the hotend itself. By selecting an appropriate machine and tweaking it a bit, [Stefan] managed to get it to work at angles up to 30 degrees off the horizontal plane. One annoyance was that the stock nozzle shape of his E3D Volcano hotend didn’t lend itself to operating at such an inclination, so he needed to mount an older V6-style tip with an adapter. After a lot of tuning and fails, it did work and the final goal was achieved! If you want to try this for yourselves, the code for this can be found on the project GitHub.

If you want to learn more about non-planar printing, we’ve covered the process of non-planar slicing a while back, and if you think your 2.5D printer doesn’t quite have the range for really funky print paths, then you may want to look into a robot arm based printer instead.

# AI Maybe Revives Dead Languages

While Star Trek’s transporter is hard to imagine — perfect matter movement across vast distances with no equipment on one end — it may not be the most far-fetched piece of tech on the Enterprise. While there are several contenders, I strongly suspect the universal translator is the most unlikely MacGuffin. After all, how would you decipher a totally unknown language in real-time? Of course, no one wants to watch 30 episodes of TV about how we finally figured out what Klingons call clouds, so pretty much every science fiction movie has some hand-waving explanation for speaking the viewer’s language. Farscape had microbes, some aliens have telepathy that works with alien brains of any kind, and still others study English from afar for decades off camera. Babelfish anyone?

I was thinking about this because of an article I read by [Alizeh Kohari] about [Jiaming Luo’s] work using AI to decode dead languages. While this might seem to be similar to Spock’s translator, it really isn’t. Human languages change over time and distance. You only have to watch the BBC or read something written by Thomas Jefferson to see that. But there is still a lot in common, at least within certain domains.

# Minimalistic Doorbell Doesn’t Need An Internet Connection – Or Even A Power Supply

Doorbells are among those everyday objects that started out simple but picked up an immense amount of complexity over the years. What began as a mechanism to bang two pieces of metal together evolved into all kinds of wired and wireless electric bells, finally culminating in today’s smart doorbells that beam a live video feed to their owners even if they’re half a world away.

But sometimes, less is more. [Low tech obsession] built a doorbell out of spare components that doesn’t require Internet connectivity or even a power supply. But it’s not a purely mechanical device either: the visitor turns a knob mounted on a stepper motor, generating pulses of alternating current. These pulses are then fed into the voice coil of an old hard drive, causing its arm to vibrate and strike a bell, mounted where the platters used to be.

Besides being a great piece of minimalistic design, the doorbell is also a neat demonstration of Faraday’s law of induction. The stepper motor is apparently robust enough to withstand vandalism, although we can imagine that the doorbell’s odd shape might confuse some well-meaning visitors too. If you’re into unusual doorbells, you might want to check out this one made from an old wall phone, as well as this electromechanical contraption.