Rotary Phone MIDI Controller Still Makes Calls

[Kevin] has long wanted to do something musical with a vintage rotary phone and an Arduino, and has finally done so and committed the first of several experiments to HTML in a five-part series. He found a nice old British Telecom number, but it had been converted to plug and socket wiring to work on the modern system. Because of this, [Kevin] wanted to keep it completely functional as a phone. After all, it ought to work fine until 2025, when pulse dialing will no longer be supported in [Kevin]’s locality.

As you can likely understand, [Kevin] was keen to interface with the phone from the outside and leave the inside untouched. He used a sacrificial ADSL filter’s PCB to break out the socket, and added a pull-up resistor between the pin and 5 V.

Pretty quickly, [Kevin] figured out that when the phone is on the hook, it gives a constant high signal, where as the picking up the phone presents as a high signal going low, and dialing each number results in pulses of that quantity that alternate between high and low. Continue reading “Rotary Phone MIDI Controller Still Makes Calls”

In 2045: Alpha Centauri

We’ve talked about project Breakthrough Starshot which aims to send a solar sail probe to Alpha Centauri within 20 years. A little basic math and knowing that Alpha Centauri is 4.3 light years away means you are going to need to travel over 20% of the speed of light to make the trip in that time. Some new papers have proposed ways to address a few of the engineering problems.

The basic idea is simple. A very small probe is attached to a very large sail. But calling it a solar sail is a bit of a misnomer. The motive power for the sail would be a powerful laser, which provides more reliable power to the tiny probe’s propulsion system. The problems? First, the thin sail could tear under constant pressure. The answer, according to one of the papers, is to shape the sail like a parachute so it can billow under pressure.

The other problem is not burning the sail up. Space is a hard environment to dump waste heat into since radiation is the only way to transfer it. Another paper suggests that nanoscale patterns on the sail will allow it to release waste heat into the interstellar environment.

Continue reading “In 2045: Alpha Centauri”

Mustool Scopemeter Review And Teardown

There was a time when calculators became so powerful it was hard to tell them from little computers. The same thing seems to be happening now with multimeters. They now often have large screens and basic oscilloscope functionality. The specs keep getting better. While early cheap scopemeters were often relatively low frequency, many are now claiming bandwidths that would have cost quite a bit a few decades ago. A case in point is the Mustool MDS8207 which [IMSAI Guy] reviews and does a teardown of in the videos you can see below. It claims a 40 MHz bandwidth with 200 megasamples per second on a single channel.

The only downside in the claimed specifications is that the sensitivity isn’t great given that the lowest setting is 500 mV per division. Then again for a meter that runs under $100, any scope function would seem to be a bonus. The meter does all the other things you expect a meter to do these days, such as reading voltage, frequency, capacitors, temperature, etc. The response time of the meter is relatively slow, but you can get used to that.

Continue reading “Mustool Scopemeter Review And Teardown”

Simple Arduino Build Lets You Keep An Eye On Pi

Are you a math aficionado in need of a new desk toy? Then do we have the project for you. With nothing more than an Arduino and a seven-segment LED module, [Cristiano Monteiro] has put together a little gadget that will slowly work its way through the digits of Pi forever…or until you get bored of looking at it and decide to use the parts for something else.

On the hardware side, we really can’t overstate how simple this project is. A common four-digit LED display is connected up to an Arduino Nano, which is then plugged into the computer for power. [Cristiano] is using a breadboard here, but you could just as easily use four female-to-female jumpers to connect the two devices together. We suppose this would be a pretty good project for anyone who’s looking to get some practical experience with PCB design as well.

The real magic is in the software, which [Cristiano] has been kind enough to release under the MIT license. Calculating Pi on such a resource-constrained chip as the ATmega328P is far from ideal, but by porting over a C++ algorithm developed by [Xavier Gourdon] and [Pascal Sebah] for their paper Computation of the n-th Decimal Digit of π with Low Memory he was able to pull it off, albeit slowly.

Now if you’ve got slightly better hardware, say a pair of Xeon processors and 96 GB of RAM, you could calculate Pi out to a few trillion digits for fun, but it wouldn’t look as cool as this little guy blinking away.

Continue reading “Simple Arduino Build Lets You Keep An Eye On Pi”

ApocaPi Now Is A Cyberdeck For What Comes After

The end of the world seems closer now than ever before, even in the 1980s. But you, dear Hackaday reader, will want more than just a bug-out bag full of C-rations and waterproof matches. You will need the technological version of a bug-out bag — a mil-spec-esque cyberdeck, which is exactly what [hammerandhandmi] is in the middle of perfecting.

That’s not some kind of fancy cake pan — it’s a Pelican 1170 case lined with conductive foil tape. You see, [hammerandhandmi] has various reasons not elaborated upon for doing this, including EMP protection. Inside is an 8 GB Raspberry Pi 4B donning a Pi Juice UPS HAT and sipping from a fancy power supply. The main charging source for the old Mac book battery is solar via a large panel that’s external to cyberdeck. A smaller, secondary panel lives inside for backup purposes. There’s also an MPPT charge controller for to support the different battery chemistries. [hammerandhandmi] chose the Pelican 1170 because they need to mount it to the back of an LC2 Alice rucksack frame. The 1170 is wider than the popular 1150, and is in fact almost the exact width of the LC2 frame.

The point of this build is to maintain power for the purpose of preserving knowledge — all that stuff we’ll need to rebuild humanity. There will be much information available up via FOSS offline browser Kiwix, plus an atlas, some military field manuals, a lot of survival info, all of the books Project Gutenberg has to offer, plus a handful of movies and a few game ROMs so [hammerandhandmi] can live out the rest of their days in what is hopefully some kind of solar punk utopia.

Provided there’s enough time to implement it all, [hammerandhandmi] plans to add an SDR with antenna hookup, GPS unit, 12 V port, a couple of SSDs, a powered USB hub, and maybe an RFID reader. But the coolest part is that they ultimately want to connect everything up to a HUD mounted in a ballistic helmet. See? The apocalypse could be awesome. It’s up to us!

We often see cyberdecks with mechanical keyboards, like this cherry Pi number. But the salvaged keeb from a 1989 Compaq laptop might be just as future-proof.

Tech In Plain Sight: Tough As Nails

When you think of machines you see around you every day, you probably think about your car, computer, or household appliances. However, the world is full of simple machines. One simple machine in particular, the inclined plane, shows up a lot. For example, think of the humble nail. If you are a woodworker or even a homeowner you probably have bags of them. They certainly are all around you if you are indoors and maybe even if you are outdoors right now. Nails have been the fastener of choice for a very long time and they are a form of a wedge which is a type of inclined plane.

What else can you say about nails? Turns out, there is a lot to know. Like other fasteners, there are nails for very specific purposes. There are even nails with two heads and — no kidding — nails with two points. Exactly what kind of nail you need depends on what you are doing and what’s important to you.

Continue reading “Tech In Plain Sight: Tough As Nails”

Three flowers in a corner of a darkened room, shining in different colors.

LED Flower Bouquet Is A Radiant Hacker Desk Decoration

[Jeremy Cook] writes to us about a project of his – a bouquet of LED cube flowers. The flowers are PCB cubes made out of small castellated PCBs, each of those having an individually addressable LED in its center. Castellations hold the cubes together mechanically, and thanks to a cleverly chosen pinout, only two different kinds of PCB need to be ordered for building such a flower!

As a vase for these flowers, he decided to use a glass bottle – which would need a cutout to fit a ESP8266-powered NodeMCU board, a controller of choice for the project. After a few different approaches for cutting glass all resulted in the bottles cracking, he gave up on the “clean cut” idea and reused one of the broken bottles, gluing it back together well enough for the aesthetic to work.

[Jeremy] tells us that he’s had help from a hack we covered back in 2017 – using a diode for level shifting, as the ESP8266’s 3.3 V level signals aren’t a good match for WS2812 inputs. From there, the WLED firmware for the ESP8266 ties everything together beautifully. It’s clear that [Jeremy] had a field day designing this, toying with all the ideas and approaches!

Colorful LEDs are a must-have for decorating hacker homes. From a bouquet of flowers, you might find yourself sketching a castellated PCB tile design, and next thing you know, you’ve created a beautiful system of LED triangle tiles. Some PCB fabs scoff at castellations, and if that’s the case, you might as well finish the job yourself.

Continue reading “LED Flower Bouquet Is A Radiant Hacker Desk Decoration”