Bit-banged 100 MBit/s Ethernet Transmission On Raspberry Pi Pico

The Raspberry Pi Pico is a very capable board, but it’s still a surprise to see bit-banged 100 MBit/s Fast Ethernet implemented on one. [Steve]’s Pico-100BASE-TX library allows an RP2040 (or RP2350) microcontroller to stream data at roughly 11 Mbyte/s, enough to implement 100 MBit/s Fast Ethernet transmission.

We’ve seen 10BASE-T implemented on a Pico, but it takes a lot more than just shoveling bits faster to get 100BASE-T working. 10BASE-T uses two voltage levels and Manchester encoding, but 100BASE-T uses three voltage levels, which [Steve] cleverly implemented on the Pico with two GPIOs, and far more complex encoding. Check out the repository’s README for details as well as a couple example applications.

[Steve] tells us that to the best of his knowledge, this is the first bit-banged 100 MBit/s Ethernet implementation using a microcontroller. It’s transmit-only — reception being an entirely different beast — but it’s possible some enterprising soul might find a solution. If you do, be sure to let us know all about it!

Broken Phone To Cinema Camera With A Lens Upgrade

The advent of the mobile phone camera has caused a revolution in film making over the last couple of decades, lowering the barrier to entry significantly, and as the cameras have improved, delivering near-professional-grade quality in some cases. Mobile phone manufacturers hire film makers to promote their new flagship models and the results are very impressive, but there is still a limitation when it comes to the lenses. [Evan Monsma] has broken through that barrier, modifying an iPhone to take C-mount cinema lenses.

It’s likely many of us have one or two broken mobile phones around, and even if they aren’t flagship models they’ll still have surprisingly good camera sensors. This one is an iPhone that’s seen better days, with a severely cracked glass back and a dislodged lens cover on one of its cameras. Removing the back and the lens cover reveals the sensor. The video below the break has a lot of woodwork and filing away of the phone, as he modifies a C-to-CS ring to serve as a C-mount. In reality the flange distance makes it a CS mount so his C-mount lenses need an adapter, but as anyone who’s used a Raspberry Pi camera will tell you, that’s no hardship.

The final camera has a thick plywood back with a tripod mount installed, the other two cameras work with their Apple lenses, and the C-mount gives great results with a cinema lens. We’re concerned that the Super Glue he uses to fix it all together might not hold up to the weight of bigger lenses, but we’re here for this project and we love it.

Continue reading “Broken Phone To Cinema Camera With A Lens Upgrade”

Precision, Imprecision, Intellectual Honesty, And Little Green Men

If you’ve been following the hubbub about 3I/ATLAS, you’re probably either in the camp that thinks it’s just a comet from ridiculously far away that’s managed to find its way into our solar system, or you’re preparing for an alien invasion. (Lukewarm take: it’s just a fast moving comet.) But that doesn’t stop it from being interesting – its relatively fast speed and odd trajectory make astronomers wonder where it’s coming from, and give us clues about how old it is likely to be.

Astronomy is the odd-man-out in the natural sciences. In most branches of physics, chemistry, and even biology, you can run experiments. Even those non-experimental corners of the above fields, like botany, for instance, you can get your hands on the objects you’re talking about. Not so astronomy. When I was studying in college, one of my professors quipped that astronomers were pretty happy when they could hammer down a value within an order of magnitude, and ecstatic when they could get a factor of two or three. The deck is simply stacked against them.

With that background, I love two recent papers about 3I/ATLAS. The first tries to figure out why it’s moving so fast by figuring out if it’s been going that fast since its sun kicked it out, or if it has picked up a gravitational boost along the way. While they can’t go all the way back in time, they’ve worked out whether it has flown by anything close enough to get a significant boost over the last 10 million years. This is impressive that we can calculate the trajectory so far back, but at the same time, 10 million years is peanuts on the cosmic timescale.

According to another paper, there is a weak relationship between interstellar objects’ age and their velocity, with faster-moving rocks being older, they can estimate the age of 3I/ATLAS at between 7.6 and 14 billion years old, assuming no gravitational boosts along the way. While an age range of 7 billion years may seem like a lot, that’s only a factor of two. A winner for astronomy!

Snarkiness aside, its old age does make a testable prediction, namely that it should be relatively full of water ice. So as 3I/ATLAS comes closer to the sun in the next few weeks, we’ll either see it spitting off lots of water vapor, and the age prediction checks out, or we won’t, and they’ll need to figure out why.

Whatever happens, I appreciate how astronomers aren’t afraid to outline what they can’t know – orbital dynamics further back than a certain date, or the precise age of rocks based solely on their velocity. Most have also been cautious about calling the comet a spaceship. On the other hand, if it is, one thing’s for sure: after a longer-than-10-million-year road trip, whoever is on board that thing is going to be hungry.

A Solar Oven For Cloudy Days

Every Boy Scout or Girl Guide probably had the experience of building a simple solar oven: an insulated box, some aluminum foil, and plastic wrap, and voila! On warm, sunny, summer days, you can bake. On cloudy days, well, you need another plan. The redoubtable [Kris De Decker] and [Marie Verdeil] provide one, with this solar-electric oven over on LowTechMagazine.

Now, you might be wondering: what’s special here? Can’t I just plug a full electric range-oven into the inverter hooked to my Powerwall? Well, yes, Moneybags, you could — if you had a large enough solar setup to offset the storage and inverter losses, that is. But if you only have a few panels, you need to make every watt count. Indeed, this build was inspired by [Kris]’ earlier attempt to power his apartment with solar panels on his balcony. His electric oven is one of the things that stymied him at that time. (Not because cooking took too much energy, but because it took too much power for his tiny battery to supply at once.)

Continue reading “A Solar Oven For Cloudy Days”

A screen shot of Wireshark in action.

Hacking A Banned Chinese Security Camera

Over on YouTube [Matt Brown] hacks a Chinese security camera recently banned by the US government. If you didn’t hear about this you can find out more over here: Major US online retailers remove listings for millions of prohibited Chinese electronics.

After powering the camera with a power-over-Ethernet (PoE) adapter [Matt] sets about monitoring network activity with Wireshark. The first data comes from DNS for the host devaccess.easy4ipcloud.com, which whois reports is operated by Alibaba Cloud LLC in California. This is a Chinese owned company with servers in the United States.

[Matt] covers some basics of TLS and how it works. He then goes on to explain how a Man in the Middle (MITM) attack works at a high level. To setup a MITM attack against the camera [Matt] sets up some port redirections using iptables for ports 443, 15301, 8683, 9898, and 12337 which his Wireshark analysis indicates were being used. His MITM attack works, which means the device is not properly verifying its certificate signing chain.

[Matt] goes on to reverse engineer the custom UDP protocol used for transmitting video data. He uses a vibe-coded Python program along with ffmpeg for that and manages to reconstruct a few frames of video taken from the UDP packet capture.

We think it would be safe to say that [Matt] did indeed find a few security problems with the camera as-is, but we don’t think that’s the point of the ban. The real problem is that there is auto-update facilities for the device firmware which means that in future malicious software could be uploaded by the manufacturer in the form of a firmware update. So even if this device was secure against MITM attacks and didn’t send unencrypted video data over UDP you would still have the problem of the firmware update if there is no trust.

Continue reading “Hacking A Banned Chinese Security Camera”