Haptic Displays Bring Sports To The Vision Impaired

When it comes to the majority of sports broadcasting, it’s all about the visual. The commentators call the plays, of course, but everything you’re being shown at home is on a screen. Similarly, if you’re in the stadium, it’s all about getting the best possible view from the best seats in the house.

Ultimately, the action can be a little harder to follow for the vision impaired. However, one company is working hard to make sports more accessible to everyone. Enter OneCourt, and their haptic sports display technology.

Continue reading “Haptic Displays Bring Sports To The Vision Impaired”

Is This The Oldest HD Video Online?

Take a look at this video from [Reely Interesting], showing scenes from traditional Japanese festivals. It’s well filmed, and as with any HD video, you can see real detail. But as you watch, you may see something a little out of the ordinary. It’s got noise, a little bit of distortion, and looking closely at the surroundings, it’s clearly from the 1980s. Something doesn’t add up, as surely we’d expect a video like this to be shot in glorious 525 line NTSC. In fact, what we’re seeing is a very rare demo reel from 1985, and it’s showing off the first commercial HDTV system. This is analogue video in 1035i, and its background as listed below the video makes for a very interesting story.

Most of us think of HDTV arriving some time in the 2000s when Blu-ray and digital broadcasting supplanted the NTSC or PAL systems. But in fact the Japanese companies had been experimenting since the 1960s, and these recordings are their first fruits. It’s been digitized from a very rare still-working Sony HDV-1000 reel-to-reel video recorder, and is thus possibly the oldest HD video viewable online. They’re looking for any HDV-1000 parts, should you happen to have one lying around. Meanwhile, the tape represents a fascinating window into a broadcast history very few of us had a chance to see back in the day.

This isn’t the first time we’ve touched on vintage reel-to-reel video.

Continue reading “Is This The Oldest HD Video Online?”

Big Chemistry: Glass

Humans have been chemically modifying their world for far longer than you might think. Long before they had the slightest idea of what was happening chemically, they were turning clay into bricks, making cement from limestone, and figuring out how to mix metals in just the right proportions to make useful new alloys like bronze. The chemical principles behind all this could wait; there was a world to build, after all.

Among these early feats of chemical happenstance was the discovery that glass could be made from simple sand. The earliest glass, likely accidentally created by a big fire on a sandy surface, probably wasn’t good for much besides decorations. It wouldn’t have taken long to realize that this stuff was fantastically useful, both as a building material and a tool, and that a pinch of this and a little of that could greatly affect its properties. The chemistry of glass has been finely tuned since those early experiments, and the process has been scaled up to incredible proportions, enough to make glass production one of the largest chemical industries in the world today.

Continue reading “Big Chemistry: Glass”

China Claims Commercial Nuclear Fusion By 2050 As Germany Goes Stellarator

Things are heating up in the world of nuclear fusion research, with most fundamental issues resolved and an increasing rate of announcements being made regarding commercial fusion power. China’s CNNC is one of the most recent voices here, with their statement that they expect to have commercial nuclear fusion plants online by 2050. Although scarce on details, China is one of the leading nations when it comes to nuclear fusion research, with multiple large tokamaks, including the HL-2M and the upcoming CFETR which we covered a few years ago.

Stellaris stellarator. (Credit: Proxima Fusion)

In addition to China’s fusion-related news, a German startup called Proxima Fusion announced their Stellaris commercial fusion plant design concept, with a targeted grid connection by the 2030s. Of note is that this involves a stellarator design, which has the major advantage of inherent plasma stability, dodging the confinement mode and Greenwald density issues that plague tokamaks. The Stellaris design is an evolution of the famous Wendelstein 7-X research stellarator at the Max Planck Institute.

While Wendelstein 7-X was not designed to produce power, it features everything from the complex coiled design and cooled divertors plus demonstrated long-term operation that a commercial reactor would need. This makes it quite likely that the coming decades we’ll be seeing the end spurt for commercial fusion power, with conceivably stellarators being the unlikely winner long before tokamaks cross the finish line.

Speaking Computers From The 1970s

Talking computers are nothing these days. But in the old days, a computer that could speak was quite the novelty. Many computers from the 1970s and 1980s used an AY-3-8910 chip and [InazumaDenki] has been playing with one of these venerable chips. You can see (and hear) the results in the video below.

The chip uses PCM, and there are different ways to store and play sounds. The video shows how different they are and even looks at the output on the oscilloscope. The chip has three voices and was produced by General Instruments, the company that initially made PIC microcontrollers. It found its way into many classic arcade games, home computers, and games like Intellivision, Vectrex, the MSX, and ZX Spectrum. Soundcards for the TRS-80 Color Computer and the Apple II used these chips. The Atari ST used a variant from Yamaha, the YM2149F.

There’s some code for an ATmega, and the video says it is part one, so we expect to see more videos on this chip soon.

General instruments had other speech chips, and some of them are still around in emulated form. In fact, you can emulate the AY-3-8910 with little more than a Raspberry Pi.

Continue reading “Speaking Computers From The 1970s”

Build A Parametric Speaker Of Your Own

The loudspeaker on your home entertainment equipment is designed to project audio around the space in which it operates, if it’s not omnidirectional as such it can feel that way as the surroundings reflect the sound to you wherever you are. Making a directional speaker to project sound over a long distance is considerably more difficult than making one similar to your home speaker, and [Orange_Murker] is here with a solution. At the recent Hacker Hotel conference in the Netherlands, she presented an ultrasonic parametric speaker. It projects an extremely narrow beam of sound over a significant distance, but it’s not an audio frequency speaker at all.

Those of you familiar with radio will recognize its operation; an ultrasonic carrier is modulated with the audio to be projected, and the speaker transfers that to the air. Just like the diode detector in an old AM radio, air is a nonlinear medium, and it performs a demodulation of the ultrasound to produce an audio frequency that can be heard. She spends a while going into modulation schemes, before revealing that she drove her speaker with a 40 kHz PWM via an H bridge. The speaker itself is an array of in-phase ultrasonic transducers, and she demonstrates the result on her audience.

This project is surprisingly simple, should you wish to have a go yourself. There’s a video below the break, and she’s put all the files in a GitHub repository. Meanwhile this isn’t the first time we’ve seen a project like this.

Continue reading “Build A Parametric Speaker Of Your Own”