This Heads Up Display Is All Wet

Athletes have a long history of using whatever they can find to enhance their performance or improve their training. While fitness tracker watches are nothing new, swimmers have used them to track their split times, distance, and other parameters. The problem with fitness trackers though is that you have to look at a watch. FORM has swim goggles that promise to address this, their smart goggles present the swimmer with a heads-up display of metrics. You can see a slick video about them below.

The screen is only on one eye, although you can switch it from left to right. The device has an inertial navigation system and is — of course — waterproof. It supposedly can withstand depths up to 32 feet and lasts 16 hours on a charge. It can use Bluetooth to send your data to your phone in addition to the display.

Continue reading “This Heads Up Display Is All Wet”

Python And Pi Provide Heads Up Display For Your Experimental Airplane

You shouldn’t be looking at screens when you’re driving, but what about a heads-up display? A screen that could put relevant information in your field of vision would be great, even more so if it used a Raspberry Pi. That’s exactly what [John] did, only he did it with an airplane.

First up, the legality of this build. [John]’s plane is registered as experimental, which, provided you know what you’re doing, is pretty close to ‘anything goes’ as you would want in a manned aircraft. [John] has a sufficient number of hours in his log book, and he’s built a Zenith 701.

For hardware, the hard part of this build is constructing a heads-up display. Fortunately, aftermarket HUDs exist, and [John] is using a Kivic projector, a $200 piece of equipment that’s readily available on Amazon. If you need a HUD for your car, there you go. The software is another thing entirely, with the goal of having the software decoupled from the display and data sources. This is somewhat easy to accomplish with a Raspberry Pi; the display is actually just some minimal text-based blocky graphics built in PyGame. This build is also decoupled from the data sources by building this as a user interface for Stratux, an independent Raspberry Pi-based ADS-B receiver for pilots.

There are several views available with this HUD, with the AHRS + ADS-B providing information on the aircraft’s attitude and altitude, along with a few indicators of the nearest planes. The traffic view expands on the ADS-B data, showing the nearest eight or so aircraft in the air, with a range, bearing, and difference in altitude. There’s a diagnostic window, and since [John]’s plane is a backcountry STOL thingamado that can hover in a strong wind, there’s also a digital version of a norden bombsight. It’s for dropping bags of flour onto a grass strip. You can check out [John]’s entire AirVenture presentation of the build below, with all the code available here.

Continue reading “Python And Pi Provide Heads Up Display For Your Experimental Airplane”

Nightvision Car Heads Up Display


[alti] wants night vision for his car, so he picked up a nightmax night vision camera that has a built in LCD. The plan is to mount the display so that it will reflect off the windshield of his car to create a simple HUD. Unfortunately the image gets reflected from the inside and outside of the windshield. The discussion in the forum is getting pretty lengthy, but it’s an interesting project.

Build Your Own Heads Up Display

heads up

okay, so i realize there’s not too much hackyness in this hack. it’s basically googles, fresnel lens, enclosure and a video source–then strapped to ones head in an uncool way.

all that said, i have a lot of things around here that can play video which are a lot smaller and lighter, so i think this is the start of a cool project….stay tuned.

Continue reading “Build Your Own Heads Up Display”

Heads-Up Display Turns Car Into Fighter Jet

While most of us will never set foot in a fighter jet, some of us can still try to get as close as possible. One of the most eye-catching features of a fighter jet (at least from the pilot’s point-of-view) is the heads-up display, so that’s exactly what [Frank] decided to build into his car to give it that touch of fighter jet style.

Heads-up displays use the small reflectivity of a transparent surface to work. In this case, [Frank] uses an LED strip placed on the dashboard to shine up into the windshield. A small amount of light is reflected back to the driver which is able to communicate vehicle statues without obscuring view of the road. [Frank]’s system is able to display information reported over the CAN bus, including voltage, engine RPM, and speed.

This display seems to account for all the issues we could think up. It automatically cycles through modes depending on driving style (revving the engine at a stoplight switches it to engine RPM mode, for example), the LEDs automatically dim at night to avoid blinding the driver, and it interfaces with the CAN bus which means the ability to display any other information in the future should be relatively straightforward. [Frank] does note some rough edges, though, namely with the power supply and the fact that there’s a large amount of data on the CAN bus that the Teensy microcontroller has a hard time sorting out.

That being said, the build is well polished and definitely adds a fighter jet quality to the car. And if [Frank] ever wants even more aviation cred for his ground transportation, he should be able to make use of a 747 controller for something on the dashboard, too.

Heads-up Display Mounts On Brim Of Your Cap

[Matt Kwan] says that coming up with a personal heads-up display wasn’t that hard. Well that’s because he made design choices that make all the difference.

The goal here was to add some augmented reality to his field of vision. He went with a baseball cap because it’s a pretty easy way to strap something to your head. You can’t see it from this angle, but the setup requires you to cut a rather large hole in brim. The image from a smartphone (HTC Desire Z in this case) which is situated with the screen pointing toward [Matt’s] forehead. The screen reflects off of a small mirror, guiding the image down through a Fresnel lens mounted in the hole of the brim. The image is reflected a second time by the plastic in front of his eyes which is coated with a slightly mirrored material. Since the image is reflected twice it appears right-side up, and the use of the Fresnel lens places the image out about 20 cm in front of his view. He tried to get some images of the effect, but we think you’ve got to see it in person before passing judgement.

This does away with the need to track head movement (there’s a few hacks for that out there though). Augmented reality software is used to turn the view from the smartphone camera into overlay data for the display.

[Thanks Tom]

Glasses Heads-up Display


[Ozan] sent in his first attempt at making his own heads up display. The optics are very simple in design, and he gutted a commercial heads up display (ICUITI) for the LCD panel and interface electronics. I haven’t played with many head mounted displays since the Nintendo virtual boy. I’m not up on my field of view calculations, so it’s difficult to equate this to a commercial headset.