Get Phone Calls Answered With The Moshi Moshi

Moshi Moshi

Have a significant other that isn’t the best at picking up the phone? [Aaron] was having a hard time reaching his wife, so he hacked up a solution. The Moshi Moshi detects calls from [Aaron], and plays music to get her attention.

A remote server running Asterisk picks up the call and uses a Ruby script to log the call. Every ten seconds, an Arduino Due with an Ethernet shield polls a Sinatra web server to see if a call has arrived. If a new call has come in, a music loop is played. Getting the Due to loop audio was a bit of a challenge, but the end result sounds good.

Quite a bit of tech is brought together to make the Moshi Moshi, and all the code is provided in the write up. This could be helpful to anyone looking to combine hardware with the Asterisk PBX. After the break, [Aaron] shows us how the system works.

Continue reading “Get Phone Calls Answered With The Moshi Moshi”

IR Based Augmented Reality

ARUCI

For a final design project, [Frank] and his group took on an augmented reality project. The goal was to make objects interactively controllable by pointing a smartphone at them. Their solution was Augmented Reality Universal Controller and Identifier (ARUCI).

The system locates controllable objects by sensing IR beacons that contain identifiers for each object. The IR is received by a Wiimote sensor, which has been integrated into a custom PCB. This board sits in a 3D printed enclosure, and mounts to the back of a smartphone. The electronics are powered by tapping off of the phone’s battery.

Commands are sent to devices using a custom 2.4 GHz protocol which was implemented using the ATmega128RFA1. Each device has another ATmega to receive the signal and control the real world object. In their demo, the group shows the system controlling devices including a TV, a radio, and an RC car.

The system provides an interesting way to interact with objects, and the hardware integration is quite impressive. After the break, watch [Frank] give a demo.

Continue reading “IR Based Augmented Reality”

Giving An Electric RC Plane An Afterburner

RC Afterburner

The folks at Flitetest decided to add some extra power to an electric DH.100 Vampire RC plane by adding a butane afterburner. After some testing, and a bit of fire, they were able to make it fly.

Their afterburner uses a small butane canister for fuel. A servo motor actuates the valve on the canister, forcing fuel into a tube. This tube is set up to regulate the flow of butane and ensure it vaporizes before reaching the afterburner.

At the afterburner, a circular piece of tubing with holes is used to dispense fuel, much like a barbecue. This tube is connected to one side of a stun gun’s flyback generator, and the metal surrounding it is connected to the other. The stun gun creates sparks across the gap and ignites the fuel.

With the extra components added, the landing gear was removed to save weight and the plane was given a nice coat of paint. They started it up for a test run, and the plane’s body caught fire. After some rework, they managed to take off, start the afterburner, fly around, and belly land the plane. It achieved some additional thrust, but also sounds and looks awesome.

After the break, check out a video walkthrough and demo. We promise you fire.

Continue reading “Giving An Electric RC Plane An Afterburner”

Rogue Pi: A RPi Pentesting Dropbox

Rogue Pi

A pentesting dropbox is used to allow a pentester to remotely access and audit a network. The device is dropped onto a network, and then sets up a connection which allows remote access. As a final project, [Kalen] built the Rogue Pi, a pentesting dropbox based on the Raspberry Pi.

The Rogue Pi has a few features that make it helpful for pentesting. First off, it has a power on test that verifies that the installation onto the target network was successful. Since the install of a dropbox needs to be inconspicuous, this helps with getting the device setup without being detected. A LCD allows the user to see if the installation was successful without an additional computer or external display.

Once powered on, the device creates a reverse SSH tunnel, which provides remote access to the device. Using a reverse tunnel allows the device to get around the network’s firewall. Aircrack-ng has been included on the device to allow for wireless attacks, and a hidden SSID allows for wireless access if the wired network has issues. There is a long list of pentesting tools that have been built to run on the Pi.

Check out a video demonstration of the dropbox after the break.

Continue reading “Rogue Pi: A RPi Pentesting Dropbox”

Smoothing 3D Prints With Acetone Vapor

If you’ve ever used an extruding 3D printer, you know that the resulting prints aren’t exactly smooth. At the Southackton hackerspace [James] and [Bracken] worked out a method of smoothing the parts out using vapor. The method involves heating acetone until it forms a vapor, then exposing ABS parts to the vapor. The method only works with ABS, but creates some good looking results.

Acetone is rather flammable, so the guys started out with some safety testing. This involved getting a good air to fuel mixture of acetone, and testing what the worst case scenario would be if it were to ignite. The tests showed that the amount of acetone they used would be rather safe, even if it caught fire, which was a concern several people mentioned last time we saw the method.

After the break, [James] and [Bracken] give a detailed explanation of the process.

Continue reading “Smoothing 3D Prints With Acetone Vapor”

Playing MAME Games On A RGB Laser Projector

MAME Laser Projector

Vector based displays were used for arcade games in the ’70s and ’80s. A typical CRT uses raster graphics, which are displayed by deflecting a beam in a grid pattern onto a phosphor. A vector display deflects the beam in lines rather than a full grid, drawing only the needed vectors. Perhaps the best known vector game is the original Asteroids.

[Jeremy] built up a RGB laser projector, and wanted to run some classic arcade titles on it. He started off by using the XMAME emulator, but had to modify it to communicate with the laser and reduce flicker on the display.

To control the laser, a modified version of OpenLase was used. This had to be enhanced to support RGB color. The modified sources for both the MAME emulator and OpenLase are available on Github.

[Jeremy]’s friend, [Steve], even got a vector based game that he wrote working on the system. “World War vi” is a shoot-em-up battle about the vi and emacs text editors.

The results of the build are shown in a series of videos after the break.

Continue reading “Playing MAME Games On A RGB Laser Projector”

“Hacking The Xbox” Released For Free In Honor Of [Aaron Swartz]

Hacking the Xbox Cover

[Bunnie], the hardware hacker who first hacked into the original Xbox while at MIT, is releasing his book on the subject for free. The book was originally released in 2003, and delves into both the technical and legal aspects of hacking into the console.

The book is being released along with an open letter from [Bunnie]. He discusses the issues he faced with MIT legal and copyright law when working on the project, and explains that the book is being released to honor [Aaron Swartz]. [Swartz] committed suicide in January following aggressive prosecution by the US government.

The book is a great read on practical applications of hardware hacking. It starts off with simple hacks: installing a blue LED, building a USB adapter for the device’s controller ports, and replacing the power supply. The rest of the book goes over how the security on the device was compromised, and the legal implications of pulling off the hack.

[Bunnie]’s open letter is worth a read, it explains the legal bullying that hackers deal with from a first hand prospective. The book itself is a fantastic primer on hardware hacking, and with this release anyone who hasn’t read it should grab the free PDF.